1
|
Medina LY, Serda RE. Intercellular Communication Through Microtubular Highways. Results Probl Cell Differ 2024; 73:155-171. [PMID: 39242379 DOI: 10.1007/978-3-031-62036-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.
Collapse
Affiliation(s)
- Lorél Y Medina
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Rita E Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Wang YF, Shen ZF, Xiang FY, Wang H, Zhang P, Zhang Q. The direct transfer approach for transcellular drug delivery. Drug Deliv 2023; 30:2288799. [PMID: 38037327 PMCID: PMC10987047 DOI: 10.1080/10717544.2023.2288799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
A promising paradigm for drug administration that has garnered increasing attention in recent years is the direct transfer (DT) of nanoparticles for transcellular drug delivery. DT requires direct cell-cell contact and facilitates unidirectional and bidirectional matter exchange between neighboring cells. Consequently, DT enables fast and deep penetration of drugs into the targeted tissues. This comprehensive review discusses the direct transfer concept, which can be delineated into the following three distinct modalities: membrane contact-direct transfer, gap junction-mediated direct transfer (GJ-DT), and tunneling nanotubes-mediated direct transfer (TNTs-DT). Further, the intercellular structures for each modality of direct transfer and their respective merits and demerits are summarized. The review also discusses the recent progress on the drugs or drug delivery systems that could activate DT.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-yue Xiang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Garcia SM, Naik JS, Resta TC, Jernigan NL. Acid-sensing ion channel 1a activates IKCa/SKCa channels and contributes to endothelium-dependent dilation. J Gen Physiol 2023; 155:e202213173. [PMID: 36484717 PMCID: PMC9984545 DOI: 10.1085/jgp.202213173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) belongs to a novel family of proton-gated cation channels that are permeable to both Na+ and Ca2+. ASIC1a is expressed in vascular smooth muscle and endothelial cells in a variety of vascular beds, yet little is known regarding the potential impact of ASIC1a to regulate local vascular reactivity. Our previous studies in rat mesenteric arteries suggest ASIC1a does not contribute to agonist-induced vasoconstriction but may mediate a vasodilatory response. The objective of the current study is to determine the role of ASIC1a in systemic vasodilatory responses by testing the hypothesis that the activation of endothelial ASIC1a mediates vasodilation of mesenteric resistance arteries through an endothelium-dependent hyperpolarization (EDH)-related pathway. The selective ASIC1a antagonist psalmotoxin 1 (PcTX1) largely attenuated the sustained vasodilatory response to acetylcholine (ACh) in isolated, pressurized mesenteric resistance arteries and ACh-mediated Ca2+ influx in freshly isolated mesenteric endothelial tubes. Similarly, basal tone was enhanced and ACh-induced vasodilation blunted in mesenteric arteries from Asic1a knockout mice. ASIC1a colocalizes with intermediate- and small-conductance Ca2+-activated K+ channels (IKCa and SKCa, respectively), and the IKCa/SKCa-sensitive component of the ACh-mediated vasodilation was blocked by ASIC1a inhibition. To determine the role of ASIC1a to activate IKCa/SKCa channels, we measured whole-cell K+ currents using the perforated-patch clamp technique in freshly isolated mesenteric endothelial cells. Inhibition of ASIC1a prevented ACh-induced activation of IKCa/SKCa channels. The ASIC1 agonist, α/β-MitTx, activated IKCa/SKCa channels and induced an IKCa/SKCa-dependent vasodilation. Together, the present study demonstrates that ASIC1a couples to IKCa/SKCa channels in mesenteric resistance arteries to mediate endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Selina M. Garcia
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Jay S. Naik
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Thomas C. Resta
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Nikki L. Jernigan
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
4
|
Zhang P, Wu G, Zhang D, Lai WF. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 2023; 354:69-79. [PMID: 36603810 DOI: 10.1016/j.jconrel.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Bladder cancer (BCa) is one of the most prevalent cancers worldwide. The effectiveness of intravesical therapy for bladder cancer, however, is limited due to the short dwell time and the presence of permeation barriers. Considering the histopathological features of BCa, the permeation barriers for drugs to transport across consist of a mucus layer and a nether tumor physiological barrier. Mucoadhesive delivery systems or mucus-penetrating delivery systems are developed to enhance their retention in or penetration across the mucus layer, but delivery systems that are capable of mucoadhesion-to-mucopenetration transition are more efficient to deliver drugs across the mucus layer. For the tumor physiological barrier, delivery systems mainly rely on four types of penetration mechanisms to cross it. This review summarizes the classical and latest approaches to intravesical drug delivery systems to penetrate BCa.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Guoqing Wu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
5
|
Volk LB, Cooper KL, Jiang T, Paffett ML, Hudson LG. Impacts of arsenic on Rad18 and translesion synthesis. Toxicol Appl Pharmacol 2022; 454:116230. [PMID: 36087615 PMCID: PMC10144522 DOI: 10.1016/j.taap.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Arsenite interferes with DNA repair protein function resulting in the retention of UV-induced DNA damage. Accumulated DNA damage promotes replication stress which is bypassed by DNA damage tolerance pathways such as translesion synthesis (TLS). Rad18 is an essential factor in initiating TLS through PCNA monoubiquitination and contains two functionally and structurally distinct zinc fingers that are potential targets for arsenite binding. Arsenite treatment displaced zinc from endogenous Rad18 protein and mass spectrometry analysis revealed arsenite binding to both the Rad18 RING finger and UBZ domains. Consequently, arsenite inhibited Rad18 RING finger dependent PCNA monoubiquitination and polymerase eta recruitment to DNA damage in UV exposed keratinocytes, both of which enhance the bypass of cyclobutane pyrimidine dimers during replication. Further analysis demonstrated multiple effects of arsenite, including the reduction in nuclear localization and UV-induced chromatin recruitment of Rad18 and its binding partner Rad6, which may also negatively impact TLS initiation. Arsenite and Rad18 knockdown in UV exposed keratinocytes significantly increased markers of replication stress and DNA strand breaks to a similar degree, suggesting arsenite mediates its effects through Rad18. Comet assay analysis confirmed an increase in both UV-induced single-stranded DNA and DNA double-strand breaks in arsenite treated keratinocytes compared to UV alone. Altogether, this study supports a mechanism by which arsenite inhibits TLS through the altered activity and regulation of Rad18. Arsenite elevated the levels of UV-induced replication stress and consequently, single-stranded DNA gaps and DNA double-strand breaks. These potentially mutagenic outcomes support a role for TLS in the cocarcinogenicity of arsenite.
Collapse
Affiliation(s)
- L B Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - K L Cooper
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - T Jiang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - M L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, 2325 Camino de Salud, Albuquerque, NM 87131, USA.
| | - L G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
6
|
Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2016. [PMID: 35745355 PMCID: PMC9228019 DOI: 10.3390/nano12122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.
Collapse
Affiliation(s)
- Amirsadra Ahmadi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Moses Sokunbi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Trisha Patel
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Zeeshan Ahmad
- Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| |
Collapse
|