1
|
Danescu S, Negrutiu M, Has C. Treatment of Epidermolysis Bullosa and Future Directions: A Review. Dermatol Ther (Heidelb) 2024; 14:2059-2075. [PMID: 39090514 PMCID: PMC11333680 DOI: 10.1007/s13555-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Has
- Department of Dermatology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Page S, Rode T, Breitkreutz J, Wagner-Hattler L. Minitablets current use and future opportunities - An APV course on manufacturing, packaging, characterization and use of minitablets. Eur J Pharm Biopharm 2024; 199:114294. [PMID: 38636884 DOI: 10.1016/j.ejpb.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Recently, APV organized in collaboration with Fette Compacting GmbH a course on current use and future opportunities of minitablets. The course including a workshop was attended by 30 participants and focused on the manufacturing, packaging, characterization and medical use of minitablets. It took place at the Headquarter of Fette Compacting GmbH in Schwarzenbek. This article provides an overview on the topics presented and discussed during the course.
Collapse
Affiliation(s)
- Susanne Page
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, CH-4070 Basel, Switzerland.
| | - Timo Rode
- Pharmaceutical Development, Nordmark Pharma GmbH, Pinnauallee 4, 25436 Uetersen, Germany.
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Geb. 26.22, 40225 Düsseldorf, Germany.
| | - Leonie Wagner-Hattler
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, CH-4070 Basel, Switzerland.
| |
Collapse
|
3
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
4
|
Lura V, Klinken S, Breitkreutz J. A systematic investigation of external lubrication of mini-tablets on a rotary tablet press with focus on the tensile strength. Eur J Pharm Biopharm 2024; 198:114236. [PMID: 38423137 DOI: 10.1016/j.ejpb.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
External lubrication is an alternative to internal lubrication and its related detrimental effects on properties of tablets like tensile strength (TS). However, to date there are hardly any systematic investigations on external lubrication of mini-tablets on rotary tablet presses. Aim of this study was the systematic investigation of the impact of parameters tableting pressure, tableting speed, dosing rate and air pressure on the TS of mini-tablets. Both studies, the Central Composite Design (CCD) with SMCC 90 and the subsequently executed D-optimal design with SMCC 50, exhibited that tableting pressure had the highest positive effect on TS. Tableting speed and dosing rate in the CCD presumably did not seem to influence the TS, air pressure represented a positive coefficient. An additional temporal factor seemed to impact the results, deduced from the negative effect of the experimental order on TS in the CCD and from the negative correlation along the execution order in the residual plots. Additional long runs support findings of a non-linear decrease of TS over time. An interplay between dosing rate level and performance of the dust extraction collector is assumed, making more magnesium stearate available in the tablet press and potentially causing gradual contamination of the powder over time.
Collapse
Affiliation(s)
- Valentinë Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
5
|
Lura V, Klinken S, Breitkreutz J. Challenges in the transfer and scale-up of mini-tableting: Case study with losartan potassium. Eur J Pharm Biopharm 2023; 192:161-173. [PMID: 37820883 DOI: 10.1016/j.ejpb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Mini-tablets (MTs) with losartan potassium were developed to treat the rare disease Epidermolysis Bullosa. The focus was placed on transfer and scale-up of a direct compressible formulation from the compaction simulator STYL'One Evo (CS) to the rotary tablet press Korsch XM 12 (RP). Transfer of tabletability and compactibility profiles from CS to RP did not show good agreement, e.g. at a tableting pressure of 125 MPa mean tensile strengths (TS) of 4 MPa on CS and 1-1.5 MPa on RP were reached. These results highlight the impact of the feed frame on final product qualities depending on process and material factors. In the scale-up studies the critical quality attributes (CQAs) mass variation, content uniformity, TS and disintegration time were investigated. After an appropriate run-up time, most CQAs reached a plateau, after reaching a balance between influx, efflux and distribution of lubricant in the feed frame. TS values of 1-2 MPa, disintegration times of max. 50 s, mass variation of 0.9-2.2 % (CV) and acceptance values below 15.0 were reached depending on chosen process parameters.
Collapse
Affiliation(s)
- Valentinë Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Klinken S, Quodbach J. Sums of amplitudes analysis – A new non-parametric classification method for time series deviation evaluation in pharmaceutical processes. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|