1
|
Sun Y, Wang X, Zhang X, Li Y, Wang D, Sun F, Wang C, Shi Z, Yang X, Yang Z, Wei H, Song Y, Qing G. Di-caffeoylquinic acid: a potential inhibitor for amyloid-beta aggregation. J Nat Med 2024; 78:1029-1043. [PMID: 38926328 DOI: 10.1007/s11418-024-01825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) remains a challenging neurodegenerative disorder with limited therapeutic success. Traditional Chinese Medicine (TCM), as a promising new source for AD, still requires further exploration to understand its complex components and mechanisms. Here, focused on addressing Aβ (1-40) aggregation, a hallmark of AD pathology, we employed a Thioflavin T fluorescence labeling method for screening the active molecular library of TCM which we established. Among the eight identified, 1,3-di-caffeoylquinic acid emerged as the most promising, exhibiting a robust binding affinity with a KD value of 26.7 nM. This study delves into the molecular intricacies by utilizing advanced techniques, including two-dimensional (2D) 15N-1H heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and molecular docking simulations. These analyses revealed that 1,3-di-caffeoylquinic acid disrupts Aβ (1-40) self-aggregation by interacting with specific phenolic hydroxyl and amino acid residues, particularly at Met-35 in Aβ (1-40). Furthermore, at the cellular level, the identified compounds, especially 1,3-di-caffeoylquinic acid, demonstrated low toxicity and exhibited therapeutic potential by regulating mitochondrial membrane potential, reducing cell apoptosis, and mitigating Aβ (1-40)-induced cellular damage. This study presents a targeted exploration of catechol compounds with implications for effective interventions in AD and sheds light on the intricate molecular mechanisms underlying Aβ (1-40) aggregation disruption.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xue Wang
- Shandong Dongyue Polymer Materials Co., Ltd, Shandong, 256400, China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Cunli Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenqiang Shi
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xindi Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiying Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haijie Wei
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanling Song
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
2
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
3
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
4
|
Yahyazadeh R, Rahimi VB, Yahyazadeh A, Askari VR. A Mechanistic Review on Protective Effects of Mangosteen and its Xanthones Against Hazardous Materials and Toxins. Curr Neuropharmacol 2024; 22:1986-2015. [PMID: 38486389 PMCID: PMC11333789 DOI: 10.2174/1570159x22666240212142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2024] Open
Abstract
Due to its pharmacological properties, α-Mangostin, mainly found in Garcinia mangostana (G. mangostana) L. (Mangosteen, queen of fruits), treats wounds, skin infections, and many other disorders. In fact, α-Mangostin and other xanthonoid, including β-Mangostin and γ-Mangostin, are found in G. mangostana, which have various advantages, namely neuroprotective, anti-proliferative, antinociceptive, antioxidant, pro-apoptotic, anti-obesity, anti-inflammatory, and hypoglycemic through multiple signaling mechanisms, for instance, extracellular signal-regulated kinase1/2 (ERK 1/2), mitogenactivated Protein kinase (MAPK), nuclear factor-kappa B (NF-kB), transforming growth factor beta1 (TGF-β1) and AMP-activated protein kinase (AMPK). This review presents comprehensive information on Mangosteen's pharmacological and antitoxic aspects and its xanthones against various natural and chemical toxins. Because of the insufficient clinical study, we hope the current research can benefit from performing clinical and preclinical studies against different toxic agents.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Li X, Ta W, Hua R, Song J, Lu W. A Review on Increasing the Targeting of PAMAM as Carriers in Glioma Therapy. Biomedicines 2022; 10:biomedicines10102455. [PMID: 36289715 PMCID: PMC9599152 DOI: 10.3390/biomedicines10102455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma is an invasive brain cancer, and it is difficult to achieve desired therapeutic effects due to the high postoperative recurrence rate and limited efficacy of drug therapy hindered by the biological barrier of brain tissue. Nanodrug delivery systems are of great interest, and many efforts have been made to utilize them for glioma treatment. Polyamidoamine (PAMAM), a starburst dendrimer, provides malleable molecular size, functionalized molecular structure and penetrable brain barrier characteristics. Therefore, PAMAM-based nanodrug delivery systems (PAMAM DDS) are preferred for glioma treatment research. In this review, experimental studies on PAMAM DDS for glioma therapy were focused on and summarized. Emphasis was given to three major topics: methods of drug loading, linkers between drug/ligand and PAMAM and ligands of modified PAMAM. A strategy for well-designed PAMAM DDS for glioma treatment was proposed. Purposefully understanding the physicochemical and structural characteristics of drugs is necessary for selecting drug loading methods and achieving high drug loading capacity. Additionally, functional ligands contribute to achieving the brain targeting, brain penetration and low toxicity of PAMAM DDS. Furthermore, a brilliant linker facilitates multidrug combination and multifunctional PAMAM DDS. PAMAM DDS show excellent promise as drug vehicles and will be further studied for product development and safety evaluation.
Collapse
|