1
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
2
|
Zeng Y, Zhang JW, Yang J. Optimal traditional Chinese medicine formulas in treating ulcerative colitis: Choose one or take it all? World J Clin Cases 2024; 12:6570-6574. [PMID: 39554899 PMCID: PMC11438634 DOI: 10.12998/wjcc.v12.i32.6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/24/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that presents significant treatment challenges due to its complexity, especially in terms of the various side effects that traditional medications may bring during the chronic course of the disease. Traditional Chinese medicine (TCM) has emerged as a promising complementary therapy for UC. Based on the latest research, our editorial explored the current issues and potential essential research directions for TCM in treating UC. We anticipate that future high-quality research will pave the way for the optimization of TCM formulas for UC and their broader global application.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun-Wen Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jian Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as immunomodulatory drivers: Current knowledge, gaps, and perspectives. Food Chem 2024; 457:140168. [PMID: 38908244 DOI: 10.1016/j.foodchem.2024.140168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| |
Collapse
|
4
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
5
|
Gu W, Guo W, Ren Z, Zhang Y, Han M, Zhao Q, Gao Y, Mao Y, Wang S. A bioactive nanocomposite integrated specific TAMs target and synergistic TAMs repolarization for effective cancer immunotherapy. Bioact Mater 2024; 38:472-485. [PMID: 38779591 PMCID: PMC11109736 DOI: 10.1016/j.bioactmat.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Wen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Zhishuang Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yimeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Han
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yikun Gao
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
6
|
Valentino A, Conte R, Bousta D, Bekkari H, Di Salle A, Calarco A, Peluso G. Extracellular Vesicles Derived from Opuntia ficus-indica Fruit (OFI-EVs) Speed Up the Normal Wound Healing Processes by Modulating Cellular Responses. Int J Mol Sci 2024; 25:7103. [PMID: 39000212 PMCID: PMC11241772 DOI: 10.3390/ijms25137103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) have been recognized as important mediators of intercellular communication able to transfer active biomolecules across the plant and animal kingdoms. EVs have demonstrated an impressive array of biological activities, displaying preventive and therapeutic potential in mitigating various pathological processes. Indeed, the simplicity of delivering exogenous and endogenous bioactive molecules to mammalian cells with their low cytotoxicity makes EVs suitable agents for new therapeutic strategies for a variety of pathologies. In this study, EVs were isolated from Opuntia ficus-indica fruit (OFI-EVs) and characterized by particle size distribution, concentration, and bioactive molecule composition. OFI-EVs had no obvious toxicity and demonstrated a protective role in the inflammatory process and oxidative stress in vitro model of chronic skin wounds. The results demonstrated that pretreatment with OFI-EVs decreased the activity and gene expression of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the LPS-stimulated human leukemia monocytic cell line (THP-1). Furthermore, OFI-EVs promote the migration of human dermal fibroblasts (HDFs), speeding up the normal wound healing processes. This study sheds light, for the first time, on the role of OFI-EVs in modulating important biological processes such as inflammation and oxidation, thereby identifying EVs as potential candidates for healing chronic cutaneous wounds.
Collapse
Affiliation(s)
- Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants Tounate, Taounate 34000, Morocco;
| | - Hicham Bekkari
- Laboratory of Biotechnology, Environment, Agrofood and Health (LBEAS), Fez 30000, Morocco;
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.D.S.); (G.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
7
|
Saroj S, Us P, Patil S, Paul D, Saha S, Ali A, Pal S, Lochab B, Rakshit T. Herb Extracellular Vesicle-Chitosan-PEGylated Graphene Oxide Conjugate Delivers Estrogen Receptor α Targeting siRNA to Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2741-2751. [PMID: 38630629 DOI: 10.1021/acsabm.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Poornima Us
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sachin Patil
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sunita Saha
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Akbar Ali
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Suchetan Pal
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
- Department of Bioscience and Biomedical Engineering, IIT Bhilai, Durg 491001, India
| | - Bimlesh Lochab
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
8
|
Jin Z, Na J, Lin X, Jiao R, Liu X, Huang Y. Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy. Heliyon 2024; 10:e30630. [PMID: 38765146 PMCID: PMC11098843 DOI: 10.1016/j.heliyon.2024.e30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Exosomes are extracellular vesicles comprising bilayer phospholipid membranes and are secreted by eukaryotic cells. They are released via cellular exocytosis, contain DNA, RNA, proteins, and other substances, and participate in various cellular communications between tissues and organs. Since the discovery of exosomes in 1983, animal-derived exosomes have become a research focus for small-molecule drug delivery in biology, medicine, and other fields owing to their good biocompatibility and homing effects. Recent studies have found that plant-derived exosome-like nanovesicles (PELNVs) exhibit certain biological effects, such as anti-inflammatory and anti-tumor abilities, and have minimal toxic side effects. Because they are rich in active lipid molecules with certain pharmacological effects, PELNVs could be novel carriers for drug delivery. In this review, the biological formation and effects, isolation, and extraction of PELNVs, as well as characteristics of transporting drugs as carriers are summarized to provide new ideas and methods for future research on plant-derived exosome-like nanovesicles.
Collapse
Affiliation(s)
- Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
9
|
Vanessa V, Rachmawati H, Barlian A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Future Sci OA 2024; 10:FSO943. [PMID: 38827806 PMCID: PMC11140644 DOI: 10.2144/fsoa-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 06/05/2024] Open
Abstract
Objective: Overpopulated M1 macrophages can trigger chronic inflammation. Plant-derived exosome-like nanoparticles have been reported to show beneficial bioactivities. Aim: To isolate PDEN from goldenberry fruits and evaluate its anti-inflammatory potential in macrophage polarization. Methods: GDEN were isolated by centrifugation and precipitation methods. LPS-induced RAW 264.7 cells were treated with GDEN before being evaluated with nitric oxide production assay and flow cytometry of CD80 and CD209. Results: GDEN averaged 227.7 nm in size and spherical-shaped. GDEN 40 μg/ml decreased NO production in LPS-induced cells. Flow cytometry showed that CD209 (M2 marker) positive cells were up-regulated after being treated with 20 μg/ml GDEN. Conclusion: GDEN showed anti-inflammatory potential through the ability to reduce M1 macrophages product and promote M2 polarization.
Collapse
Affiliation(s)
- Vanessa Vanessa
- School of Life Sciences & Technology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| | - Heni Rachmawati
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung (ITB), Bandung, West Java, 40132, Indonesia
| |
Collapse
|
10
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
11
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Meng Y, Sun J, Yu T, Piao H. Plant-derived nanovesicles offer a promising avenue for anti-aging interventions. PHYSIOLOGIA PLANTARUM 2024; 176:e14283. [PMID: 38627963 DOI: 10.1111/ppl.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Over the past few years, the study of plant-derived nanovesicles (PDNVs) has emerged as a hot topic of discussion and research in the scientific community. This remarkable interest stems from their potential role in facilitating intercellular communication and their unique ability to deliver biologically active components, including proteins, lipids, and miRNAs, to recipient cells. This fascinating ability to act as a molecular courier has opened up an entirely new dimension in our understanding of plant biology. The field of research focusing on the potential applications of PDNVs is still in its nascent stages. However, it has already started gaining traction due to the growing interest in its possible use in various branches of biotechnology and medicine. Their unique properties and versatile applications offer promising future research and development prospects in these fields. Despite the significant progress in our understanding, many unanswered questions and mysteries surround the mechanisms by which PDNVs function and their potential applications. There is a dire need for further extensive research to elucidate these mechanisms and explore the full potential of these fascinating vesicles. As the technology at our disposal advances and our understanding of PDNVs deepens, it is beyond doubt that PDNVs will continue to be a subject of intense research in anti-aging therapeutics. This comprehensive review is designed to delve into the fascinating and multifaceted world of PDNV-based research, particularly focusing on how these nanovesicles can be applied to anti-aging therapeutics.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| |
Collapse
|
13
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
14
|
Li J, Luo T, Wang D, Zhao Y, Jin Y, Yang G, Zhang X. Therapeutic application and potential mechanism of plant-derived extracellular vesicles in inflammatory bowel disease. J Adv Res 2024:S2090-1232(24)00047-X. [PMID: 38341033 DOI: 10.1016/j.jare.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.
Collapse
Affiliation(s)
- Jinling Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Yao Zhao
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China; Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| |
Collapse
|
15
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
16
|
Yang S, Li W, Bai X, Di Nunzio G, Fan L, Zhao Y, Ren L, Zhao R, Bian S, Liu M, Wei Y, Zhao D, Wang J. Ginseng-derived nanoparticles alleviate inflammatory bowel disease via the TLR4/MAPK and p62/Nrf2/Keap1 pathways. J Nanobiotechnology 2024; 22:48. [PMID: 38302938 PMCID: PMC10832157 DOI: 10.1186/s12951-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Song Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wenjing Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Xueyuan Bai
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Giada Di Nunzio
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Liangliang Fan
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Yueming Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Limei Ren
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Ronghua Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Shuai Bian
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Meichen Liu
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Jiawen Wang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
17
|
Bhattacharya B, Nag S, Mukherjee S, Kulkarni M, Chandane P, Mandal D, Mukerjee N, Mirgh D, Anand K, Adhikari MD, Gorai S, Thorat N. Role of Exosomes in Epithelial-Mesenchymal Transition. ACS APPLIED BIO MATERIALS 2024; 7:44-58. [PMID: 38108852 PMCID: PMC10792609 DOI: 10.1021/acsabm.3c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process driving cancer metastasis, transforming non-motile cells into a motile population that migrates to distant organs and forms secondary tumors. In recent years, cancer research has revealed a strong connection between exosomes and the EMT. Exosomes, a subpopulation of extracellular vesicles, facilitate cellular communication and dynamically regulate various aspects of cancer metastasis, including immune cell suppression, extracellular matrix remodeling, metastasis initiation, EMT initiation, and organ-specific metastasis. Tumor-derived exosomes (TEXs) and their molecular cargo, comprising proteins, lipids, nucleic acids, and carbohydrates, are essential components that promote EMT in cancer. TEXs miRNAs play a crucial role in reprogramming the tumor microenvironment, while TEX surface integrins contribute to organ-specific metastasis. Exosome-based cancer metastasis research offers a deeper understanding about cancer and an effective theranostic platform development. Additionally, various therapeutic sources of exosomes are paving the way for innovative cancer treatment development. In this Review, we spotlight the role of exosomes in EMT and their theranostic impact, aiming to inspire cancer researchers worldwide to explore this fascinating field in more innovative ways.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- Department
of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore, Tamil Nadu 632014, India
| | - Sayantanee Mukherjee
- Amrita
School of NanoSciences and Molecular Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala 682041, India
| | - Mrunal Kulkarni
- Department
of Pharmacy, BITS Pilani, Pilani, Rajasthan 333031, India
| | - Priti Chandane
- Department
of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Debashmita Mandal
- Department
of Biotechnology, Maulana Abul Kalam Azad
University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Nobendu Mukerjee
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
- Department
of Health Sciences, Novel Global Community
and Educational Foundation, Hebersham, New South Wales 2770, Australia
| | - Divya Mirgh
- Vaccine
and Immunotherapy Canter, Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Sukhamoy Gorai
- Rush University Medical
Center, 1620 W. Harrison St., Chicago, Illinois 60612, United States
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
18
|
Millan-Linares MC, Rivero-Pino F, Gonzalez-de la Rosa T, Villanueva A, Montserrat-de la Paz S. Identification, characterization, and molecular docking of immunomodulatory oligopeptides from bioavailable hempseed protein hydrolysates. Food Res Int 2024; 176:113712. [PMID: 38163680 DOI: 10.1016/j.foodres.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Promoting dietary patterns in which the content of vegetables is higher than the current consumption of them is one of the strategies to achieve a sustainable food system while promoting health in humans. Hemp (Cannabis sativa L.) protein contains bioactive peptides that can be released via enzymatic hydrolysis. These peptides must reach the target organ in order to potentially exert bioactivity and regulate specific metabolic pathways. The peptides contained in two bioavailable hempseed protein hydrolysates (bioHPHs) showing anti-inflammatory activity were identified using a transwell system employing CACO-2 cell culture as absorption model and subjected to in silico analysis to select 10 unique peptides. These sequences were chemically synthetized to verify their activity in primary human monocytes (assessing gene expression of IL-1β, IL-6, TNF-α, IL-4, IL-10, and TLR4), in addition to evaluate the interaction with TRL4/MD2 by molecular docking. Six peptides (DDNPRRF, SRRFHLA, RNIFKGF, VREPVFSF, QADIFNPR and SAERGFLY) showed high immunomodulatory activity in in vitro and the mechanisms of interaction with TLR4/MD2 were described. Bioavailable anti-inflammatory hempseed-derived peptides were identified, and their activity verified, suggesting the health benefits that the ingestion of HPHs could exert in humans. These findings open new opportunities for developing nutritional strategies with hemp as a dietary source of biopeptides to prevent the development and progression of inflammatory-related diseases.
Collapse
Affiliation(s)
- Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Alvaro Villanueva
- Department of Food & Health, Instituto de la Grasa-Spanish National Research Council (IG-CSIC), Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| |
Collapse
|
19
|
Lu Y, Xu J, Tang R, Zeng P, Li Z, You J, Li T, Zhang T, Ma X, He Y, Chen N, Deng X, Wu J. Edible pueraria lobata-derived exosome-like nanovesicles ameliorate dextran sulfate sodium-induced colitis associated lung inflammation through modulating macrophage polarization. Biomed Pharmacother 2024; 170:116098. [PMID: 38154276 DOI: 10.1016/j.biopha.2023.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), such as severe colitis, are associated with the development of lung inflammation and tissue damage. Pueraria lobata (P. lobata) plays an essential role in controlling cytokines. However, the exact mechanism of the inflammation response is still unknown. PURPOSE To investigate the effects of the P. lobata-derived exosomes-like nanovesicles (PLDENs) on colitis and their role in the lung inflammatory response. METHODS In this study, we investigated the effects of PLDENs on the dextran sulfate sodium (DSS)-induced colitis and explored the mechanisms by forming the gut-lung axis. PLDENs were characterized by mass spectrometry-based proteomic analysis. RESULTS The results showed that PLDENs had significant preventive effects in DSS-induced colitis and pathological changes in colons in a dose-dependent manner. Simultaneously, the treatment of PLDENs could effectively reduce inflammatory changes in the lung. PLDENs could selectively regulate the composition of gut microbiota. CONCLUSION These data suggested that the treatment of PLDENs could 'attenuate DSS-induced colitis and lung inflammation, providing an efficacious supplement for reducing co-morbidities in IBD patients.
Collapse
Affiliation(s)
- Yu Lu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Jin Xu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Rui Tang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peiyuan Zeng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Ziyu Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Tao Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Xiaoyu Ma
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Yuqian He
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, China; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Zhao Y, Tan H, Zhang J, Pan B, Wang N, Chen T, Shi Y, Wang Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int J Nanomedicine 2023; 18:6847-6868. [PMID: 38026523 PMCID: PMC10664809 DOI: 10.2147/ijn.s432279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yafei Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
21
|
Yugay Y, Tsydeneshieva Z, Rusapetova T, Grischenko O, Mironova A, Bulgakov D, Silant’ev V, Tchernoded G, Bulgakov V, Shkryl Y. Isolation and Characterization of Extracellular Vesicles from Arabidopsis thaliana Cell Culture and Investigation of the Specificities of Their Biogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3604. [PMID: 37896067 PMCID: PMC10609744 DOI: 10.3390/plants12203604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Over recent years, extracellular vesicles (EVs), commonly termed exosomes, have gained prominence for their potential as natural nanocarriers. It has now been recognized that plants also secrete EVs. Despite this discovery, knowledge about EV biogenesis in plant cell cultures remains limited. In our study, we have isolated and meticulously characterized EVs from the callus culture of the model plant, Arabidopsis thaliana. Our findings indicate that the abundance of EVs in calli was less than that in the plant's apoplastic fluid. This difference was associated with the transcriptional downregulation of the endosomal sorting complex required for transport (ESCRT) genes in the calli cells. While salicylic acid increased the expression of ESCRT components, it did not enhance EV production. Notably, EVs from calli contained proteins essential for cell wall biogenesis and defense mechanisms, as well as microRNAs consistent with those found in intact plants. This suggests that plant cell cultures could serve as a feasible source of EVs that reflect the characteristics of the parent plant species. However, further research is essential to determine the optimal conditions for efficient EV production in these cultured cells.
Collapse
Affiliation(s)
- Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Zhargalma Tsydeneshieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Olga Grischenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Anastasia Mironova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Dmitry Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Vladimir Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Galina Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| |
Collapse
|
22
|
Tan X, Xu Y, Zhou S, Pan M, Cao Y, Cai X, Zhao Q, Zhao K. Advances in the Study of Plant-Derived Vesicle-Like Nanoparticles in Inflammatory Diseases. J Inflamm Res 2023; 16:4363-4372. [PMID: 37795493 PMCID: PMC10547002 DOI: 10.2147/jir.s421124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
All humans are universally affected by inflammatory diseases, and there is an urgent need to identify new anti-inflammatory drugs with good therapeutic benefits and minimal side effects to the organism. Recently, it has been found that plant-derived vesicle-like nanoparticles (PDVLNs) have good biocompatibility, with their active ingredients exhibiting good therapeutic effects on inflammation. They can also be used as drug carriers for targeted delivery of anti-inflammatory drugs. Therefore, PDVLNs represent a popular research area for novel anti-inflammatory drugs. This paper details the origin, biological functions, isolation and purification, and identification of PDVLNs, as well as the therapeutic effects of their intrinsic bioactive components on inflammatory diseases. It also introduces their targets as drug carriers to facilitate the development and application of PDVLNs anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuejun Tan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yukun Xu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Sirui Zhou
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Mingyue Pan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiuping Cai
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qing Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
24
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Sadykhov NK, Midiber KY, Konyukova AK, Kontorschikov AS, Maslenkina KS, Orekhov AN. Long Non-Coding RNAs in Colorectal Cancer: Navigating the Intersections of Immunity, Intercellular Communication, and Therapeutic Potential. Biomedicines 2023; 11:2411. [PMID: 37760852 PMCID: PMC10525929 DOI: 10.3390/biomedicines11092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This comprehensive review elucidates the intricate roles of long non-coding RNAs (lncRNAs) within the colorectal cancer (CRC) microenvironment, intersecting the domains of immunity, intercellular communication, and therapeutic potential. lncRNAs, which are significantly involved in the pathogenesis of CRC, immune evasion, and the treatment response to CRC, have crucial implications in inflammation and serve as promising candidates for novel therapeutic strategies and biomarkers. This review scrutinizes the interaction of lncRNAs with the Consensus Molecular Subtypes (CMSs) of CRC, their complex interplay with the tumor stroma affecting immunity and inflammation, and their conveyance via extracellular vesicles, particularly exosomes. Furthermore, we delve into the intricate relationship between lncRNAs and other non-coding RNAs, including microRNAs and circular RNAs, in mediating cell-to-cell communication within the CRC microenvironment. Lastly, we propose potential strategies to manipulate lncRNAs to enhance anti-tumor immunity, thereby underlining the significance of lncRNAs in devising innovative therapeutic interventions in CRC.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Arcady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexandra K. Konyukova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Andrey S. Kontorschikov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Ksenia S. Maslenkina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
| | - Alexander N. Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (N.K.S.); (K.Y.M.); (A.K.K.); (A.S.K.); (K.S.M.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
25
|
Wang F, Yuan M, Shao C, Ji N, Zhang H, Li C. Momordica charantia-Derived Extracellular Vesicles Provide Antioxidant Protection in Ulcerative Colitis. Molecules 2023; 28:6182. [PMID: 37687011 PMCID: PMC10488752 DOI: 10.3390/molecules28176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived extracellular vesicles are functional nanovesicles that have significant applications in both disease prevention and treatment, as well as for use as drug carriers. Momordica charantia is a widely consumed food that has both medicinal and nutritional properties and has shown intervention in diabetes and inflammation caused by oxidative damage. In this study, Momordica charantia-derived extracellular vesicles (MCEVs) were extracted and demonstrated to have excellent antioxidant activity by characterization, lipid composition analysis, protein domain analysis, and in vitro antioxidant measurement. In addition, in vivo studies indicated that the MCEVs could restore ulcerative colitis by regulating oxidation and inflammatory factors. Therefore, the antioxidant properties of MCEVs may be important in protecting the colon from inflammation, which provides new insights into the application of MCEVs as drugs or vectors for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Feng Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Chenqi Shao
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Nan Ji
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
| | - Haifeng Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009, China
| | - Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225009, China; (F.W.); (M.Y.); (C.S.); (N.J.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
27
|
Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharm Sin B 2023; 13:3300-3320. [PMID: 37655320 PMCID: PMC10465964 DOI: 10.1016/j.apsb.2022.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 03/09/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles actively secreted by cells, that contain a variety of functional nucleic acids, proteins, and lipids, and are important mediums of intercellular communication. Based on their natural properties, EVs can not only retain the pharmacological effects of their source cells but also serve as natural delivery carriers. Among them, plant-derived nanovesicles (PNVs) are characterized as natural disease therapeutics with many advantages such as simplicity, safety, eco-friendliness, low cost, and low toxicity due to their abundant resources, large yield, and low risk of immunogenicity in vivo. This review systematically introduces the biogenesis, isolation methods, physical characterization, and components of PNVs, and describes their administration and cellular uptake as therapeutic agents. We highlight the therapeutic potential of PNVs as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, wound healing, regeneration, and antiaging properties as well as their potential use in the treatment of liver disease and COVID-19. Finally, the toxicity and immunogenicity, the current clinical application, and the possible challenges in the future development of PNVs were analyzed. We expect the functions of PNVs to be further explored to promote clinical translation, thereby facilitating the development of a new framework for the treatment of human diseases.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongmei Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Nanjing 210009, China
- Jiangsu Institute of Cancer Research, Nanjing 210009, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
28
|
Li DF, Tang Q, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Wang LS, Yao J. Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease. NANOSCALE ADVANCES 2023; 5:3575-3588. [PMID: 37441251 PMCID: PMC10334410 DOI: 10.1039/d3na00093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic autoimmune disorder characterized by inflammation. However, currently available disease-modifying anti-IBD drugs exhibit limited efficacy in IBD therapy. Furthermore, existing therapeutic approaches provide only partial relief from IBD symptoms and are associated with certain side effects. In recent years, a novel category of nanoscale membrane vesicles, known as plant-derived exosome-like nanoparticles (PDENs), has been identified in edible plants. These PDENs are abundant in bioactive lipids, proteins, microRNAs, and other pharmacologically active compounds. Notably, PDENs possess immunomodulatory, antitumor, regenerative, and anti-inflammatory properties, making them particularly promising for the treatment of intestinal diseases. Moreover, PDENs can be engineered as targeted delivery systems for the efficient transport of chemical or nucleic acid drugs to the site of intestinal inflammation. In the present study, we provided an overview of PDENs, including their biogenesis, extraction, purification, and construction strategies, and elucidated their physiological functions and therapeutic effects on IBD. Additionally, we summarized the applications and potential of PDENs in IBD treatment while highlighting the future directions and challenges in the field of emerging nanotherapeutics for IBD therapy.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Qi Tang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital Shenzhen 518020 Guangdong China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention Huizhou 516000 Guangdong China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital Shenzhen 518026 Guangdong China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital Shenzhen 518020 Guangdong China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| |
Collapse
|
29
|
Wei X, Li X, Zhang Y, Wang J, Shen S. Advances in the Therapeutic Applications of Plant-Derived Exosomes in the Treatment of Inflammatory Diseases. Biomedicines 2023; 11:1554. [PMID: 37371649 DOI: 10.3390/biomedicines11061554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Plant-derived exosomes (PLDEs) are small extracellular vesicles that encapsulate proteins, nucleic acids and lipids, and they are usually involved in intercellular communication and molecular transport in plants. PLDEs are widely used in the therapy of diseases due to their abundance and easy availability. The diverse roles of PLDEs, which include transportation of drugs, acting as biomarkers for diagnosis of diseases and their roles in different therapies, suggest that there is a need to fully understand all the mechanisms involved in order to provide the optimum conditions for their therapeutic use. This review summarizes the biogenesis, components and functions of PLDEs and focuses on their use as therapeutic agents in the treatment of inflammatory diseases. It also explores new ideas for novel approaches in which PLDEs could potentially help patients with inflammatory diseases in the future.
Collapse
Affiliation(s)
- Xiaofang Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiuyu Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangyuan Academy of Agricultural Sciences, Guangyuan 628017, China
| | - Yuejun Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jian Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuibao Shen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
30
|
Kilasoniya A, Garaeva L, Shtam T, Spitsyna A, Putevich E, Moreno-Chamba B, Salazar-Bermeo J, Komarova E, Malek A, Valero M, Saura D. Potential of Plant Exosome Vesicles from Grapefruit ( Citrus × paradisi) and Tomato ( Solanum lycopersicum) Juices as Functional Ingredients and Targeted Drug Delivery Vehicles. Antioxidants (Basel) 2023; 12:antiox12040943. [PMID: 37107317 PMCID: PMC10135875 DOI: 10.3390/antiox12040943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived extracellular vesicles (PEVs) have gained attention as promising bioactive nutraceutical molecules; their presence in common fruit juices has increased their significance because human interaction is inevitable. The goal of this study was to evaluate the potential of PEVs derived from grapefruit and tomato juices as functional ingredients, antioxidant compounds, and delivery vehicles. PEVs were isolated using differential ultracentrifugation and were found to be similar in size and morphology to mammalian exosomes. The yield of grapefruit exosome-like vesicles (GEVs) was higher than that of tomato exosome-like vesicles (TEVs), despite the latter having larger vesicle sizes. Furthermore, the antioxidant activity of GEVs and TEVs was found to be low in comparison to their juice sources, indicating a limited contribution of PEVs to the juice. GEVs showed a higher efficiency in being loaded with the heat shock protein 70 (HSP70) than TEVs, as well as a higher efficiency than TEV and PEV-free HSP70 in delivering HSP70 to glioma cells. Overall, our results revealed that GEVs present a higher potential as functional ingredients present in juice and that they exert the potential to deliver functional molecules to human cells. Although PEVs showed low antioxidant activity, their role in oxidative response in cells should be further addressed.
Collapse
Affiliation(s)
- Alina Kilasoniya
- Cátedra UCAM-DORSIA, Universidad Católica de Murcia, Campus de Los Jerónimos, 30107 Murcia, Spain
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Anastasiia Spitsyna
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia
| | - Elena Putevich
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Elena Komarova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| |
Collapse
|
31
|
Silachev DN. Study of the Molecular Mechanisms of the Therapeutic Properties of Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24087093. [PMID: 37108256 PMCID: PMC10138466 DOI: 10.3390/ijms24087093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are small biological structures that are released by cells and have important roles in intercellular communication [...].
Collapse
Affiliation(s)
- Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|
33
|
Jang J, Jeong H, Jang E, Kim E, Yoon Y, Jang S, Jeong HS, Jang G. Isolation of high-purity and high-stability exosomes from ginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1064412. [PMID: 36714697 PMCID: PMC9878552 DOI: 10.3389/fpls.2022.1064412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are nano-sized extracellular vesicles that regulate cell growth and defense by delivering bioactive cellular constituents. They are a promising material for biomedical and cosmetic utilization, especially in medicinal crops such as ginseng. One main hurdle to their usage is the need for a method to isolate stable exosomes with high purity. In this study, we first tested two methods to isolate exosomes from ginseng: ultracentrifugation, the most widely used method; and the ExoQuick system, a polymer-based exosome precipitation approach. We also designed and tested a third method in which we combined ultracentrifugation and ExoQuick methods. Size distribution analysis revealed that the exosome isolation purity by the ultracentrifugation and ExoQuick methods alone were 34.1% and 59.7%, respectively, while the combination method greatly improved exosome isolation purity (83.3%). Furthermore, we found that the combination method also increases the colloidal stability of isolated ginseng exosomes, and the increase was almost double that of the ultracentrifugation method. Lastly, we showed that the combination method can also be used to isolate high-purity and high-stability exosomes from the model plant Arabidopsis. Overall, our findings indicate that the combination method is suitable to isolate high-purity and high-stability exosomes from plants including ginseng.
Collapse
Affiliation(s)
- Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Haewon Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunjae Jang
- Biopharmaceutical Research Center, Jeonnam Bioindustry Foundation, Hwasun, Republic of Korea
| | - Eungpil Kim
- Biopharmaceutical Research Center, Jeonnam Bioindustry Foundation, Hwasun, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
34
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|
35
|
Parodi A, Kolesova EP, Voronina MV, Frolova AS, Kostyushev D, Trushina DB, Akasov R, Pallaeva T, Zamyatnin AA. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. Int J Mol Sci 2022; 23:13368. [PMID: 36362156 PMCID: PMC9656556 DOI: 10.3390/ijms232113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/04/2023] Open
Abstract
The ultimate goal of nanomedicine has always been the generation of translational technologies that can ameliorate current therapies. Cancer disease represented the primary target of nanotechnology applied to medicine, since its clinical management is characterized by very toxic therapeutics. In this effort, nanomedicine showed the potential to improve the targeting of different drugs by improving their pharmacokinetics properties and to provide the means to generate new concept of treatments based on physical treatments and biologics. In this review, we considered different platforms that reached the clinical trial investigation, providing an objective analysis about their physical and chemical properties and the working mechanism at the basis of their tumoritr opic properties. With this review, we aim to help other scientists in the field in conceiving their delivering platforms for clinical translation by providing solid examples of technologies that eventually were tested and sometimes approved for human therapy.
Collapse
Affiliation(s)
- Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maya V. Voronina
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia S. Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
| | - Roman Akasov
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
36
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
37
|
Li DF, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Yao J, Wang LS. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B 2022; 10:5853-5872. [PMID: 35876136 DOI: 10.1039/d2tb01190e] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026, Guangdong, China.
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, No. 1080, Cuizu Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
38
|
Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:ph15060708. [PMID: 35745626 PMCID: PMC9229679 DOI: 10.3390/ph15060708] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Plant derived extracellular vesicles (EVs) are nano-sized membranous vesicles released by plant cells, which contain lipids, proteins, nucleic acids and specific pharmacologically active substances. They are safe, widely available and expediently extractive. They have gratifyingly biological activity against inflammation, cancer, bacteria and oxidative aging, especially for the prevention or treatment of colitis, cancer, alcoholic liver, and COVID-19. In addition, as natural drug carriers, plant derived EVs have the potential to target the delivery of small molecule drugs and nucleic acid through oral, transdermal, injection. With the above advantages, plant derived EVs are expected to have excellent strong competitiveness in clinical application or preventive health care products in the future. We comprehensively reviewed the latest separation methods and physical characterization techniques of plant derived EVs, summarized the application of them in disease prevention or treatment and as a new drug carrier, and analyzed the clinical application prospect of plant derived EVs as a new drug carrier in the future. Finally, the problems hindering the development of plant derived EVs at present and consideration of the standardized application of them are discussed.
Collapse
|