1
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2024; 130:694-709. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources. METHODS A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023. RESULTS AND CONCLUSIONS The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
2
|
Allamreddy S, Arora M, Ganugula R, Friend R, Basu R, Kumar MNVR. Prospects for the convergence of polyphenols with pharmaceutical drugs in Type 2 Diabetes: challenges, risks, and strategies. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001074. [PMID: 39326899 DOI: 10.1124/pharmrev.124.001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that can lead to a variety of life-threatening secondary health conditions. Current treatment strategies primarily revolve around tight glucose control that is difficult to achieve and often turns out to be dangerous due to possible hypoglycemic events. Numerous long-term studies have demonstrated that complex pathways, including low-grade inflammation due to fluctuating glucose levels, are involved in the progression of the disease and the development of secondary health conditions. Growing clinical evidence supports the effectiveness of using multiple medications, possibly in combination with insulin, to effectively manage T2DM. On the other hand, despite the huge, largely untapped potential therapeutic benefit of 'polyphenols', there remains a general skepticism of the practice. However, for any evidence-based clinical intervention, the balance of benefits and risks takes center stage and is governed by biopharmaceutics principles. In this article, we outline the current clinical perspectives on pharmaceutical drug combinations, rationale for early initiation of insulin, and the advantages of novel dosage forms to meet the pathophysiological changes of T2DM, emphasizing the need for further clinical studies to substantiate these approaches. We also make the case for traditional medicines and their combinations with pharmaceutical drugs and outline the inherent challenges in doing so, while also providing recommendations for future research and clinical practice. Significance Statement Type 2 diabetes is associated with life-threatening secondary health conditions that are often difficult to treat. This review provides an in-depth account of preventing/delaying secondary health conditions through combination therapies and emphasizes the role of effective delivery strategies in realizing the translation of such combinations. We will build the case for the importance of polyphenols in diabetes, determine the reasons for skepticism, and potential combinations with pharmaceutical drugs.
Collapse
Affiliation(s)
| | - M Arora
- The University of Alabama, United States
| | - R Ganugula
- CCHS, The University of Alabama, United States
| | - R Friend
- The University of Alabama, United States
| | - R Basu
- Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, United States
| | - M N V Ravi Kumar
- Bioscience and Medicine, The University of Alabama, United States
| |
Collapse
|
3
|
Limenh LW, Worku NK, Melese M, Esubalew D, Fenta ET, Hailu M, Abie A, Mehari MG, Dagnaw TE, Delie AM. Effectiveness, safety, and preference of transdermal insulin compared to subcutaneous insulin in the treatment of diabetes patients: a systematic review of clinical trials. Diabetol Metab Syndr 2024; 16:197. [PMID: 39152512 PMCID: PMC11330025 DOI: 10.1186/s13098-024-01442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Several studies were performed on transdermal (TD) insulin delivery in vitro and in vivo, and recently, the study groups included a clinical trial in humans. Therefore, this systematic review was conducted to get summary information about the effectiveness, safety, and preferability of TD insulin in comparison with subcutaneous insulin delivery. METHODS We conducted a thorough search to find studies in the databases Cochrane Library, MEDLINE via PubMed, Web of Science Core Collection, EMBASE, Scopus, Hinari, Medlib, and Magiran until January 2024. We included 18 randomized clinical trials. RESULTS Although there are various types of TD delivery methods, the TD insulin delivery methods that have undergone clinical trials are the TD patch, micro needle TD insulin delivery, and TD insulin jet injector. Eighteen studies were conducted on TD insulin delivery, which showed either superior or comparable effectiveness, safety, and preferability of TD insulin in comparison with SC insulin. About eleven out of eighteen studies (61.1%) showed more effective blood glucose control than SC delivery, and the remaining seven studies showed comparable effectiveness with SC delivery. Eleven studies (61.1%) showed equal tolerability of TD insulin versus SC insulin, and seven studies (38.9%) showed more tolerability of TD insulin over SC insulin. In most studies, eleven out of eighteen (61.1%) showed a higher preference for TD insulin delivery over traditional SC delivery; sixth out of eighteen (33.3%) showed equal preferability for TD insulin versus SC insulin; and only one study (5.6%) showed that TD insulin delivery was less preferable than SC insulin. CONCLUSION The review revealed that clinical trials have demonstrated the effectiveness of TD insulin delivery methods such as TD patches, MN-based insulin delivery, and insulin jet injectors compared to traditional SC routes of administration. The studies showed the superior or comparable effectiveness of TD insulin in controlling blood glucose levels. Additionally, TD insulin delivery was found to be equally or more tolerable than SC insulin delivery in all studies. Overall, the majority of studies favored TD insulin delivery over traditional SC delivery methods, highlighting its potential as a preferred option for insulin administration.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Nigus Kassie Worku
- Department of Public Health, College of Medicine and Health Science, Dire Dawa University, Dire Dawa, Ethiopia
| | - Mihret Melese
- Department of Human Physiology, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Dereje Esubalew
- Department of Human Physiology, College of Medicine and Health Science, Ambo University, Ambo, Ethiopia
| | - Eneyew Talie Fenta
- Department of Public Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Mickiale Hailu
- Department of Midwifery, College of Medicine and Health Science, Dire Dawa University, Dire Dawa, Ethiopia
| | - Alemwork Abie
- Department of Midwifery, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Molla Getie Mehari
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Tenagnework Eseyneh Dagnaw
- Department of Public Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Amare Mebrat Delie
- Department of Public Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| |
Collapse
|
4
|
Rimon MTI, Hasan MW, Hassan MF, Cesmeci S. Advancements in Insulin Pumps: A Comprehensive Exploration of Insulin Pump Systems, Technologies, and Future Directions. Pharmaceutics 2024; 16:944. [PMID: 39065641 PMCID: PMC11279469 DOI: 10.3390/pharmaceutics16070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Insulin pumps have transformed the way diabetes is managed by providing a more accurate and individualized method of delivering insulin, in contrast to conventional injection routines. This research explores the progression of insulin pumps, following their advancement from initial ideas to advanced contemporary systems. The report proceeds to categorize insulin pumps according to their delivery systems, specifically differentiating between conventional, patch, and implantable pumps. Every category is thoroughly examined, emphasizing its unique characteristics and capabilities. A comparative examination of commercially available pumps is provided to enhance informed decision making. This section provides a thorough analysis of important specifications among various brands and models. Considered factors include basal rate and bolus dosage capabilities, reservoir size, user interface, and compatibility with other diabetes care tools, such as continuous glucose monitoring (CGM) devices and so on. This review seeks to empower healthcare professionals and patients with the essential information to improve diabetes treatment via individualized pump therapy options. It provides a complete assessment of the development, categorization, and full specification comparisons of insulin pumps.
Collapse
Affiliation(s)
| | | | | | - Sevki Cesmeci
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458, USA
| |
Collapse
|
5
|
Argano C, Priola L, Manno F, Corrao S. What Is the Role of Basal Weekly Insulin in Clinical Practice? The State of the Art. Biomedicines 2024; 12:900. [PMID: 38672255 PMCID: PMC11048618 DOI: 10.3390/biomedicines12040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the advent of innovative therapies in the treatment of diabetes, ever-increasing awareness is still directed to the role of insulin since it has continued to be at the centre of diabetes therapy for decades, as a therapeutic integration of innovative agents in type 2 diabetes mellitus (T2DM), as the only replacement therapy in type 1 diabetes mellitus (T1DM) and also in gestational diabetes. In this context, the study of molecules such as weekly basal insulins, both for their technological and pharmacodynamic innovation and their manageability and undoubted benefits in compliance with drug therapy, can only be a turning point in diabetes and for all its phenotypes. This review aims to provide insight into the knowledge of basal weekly insulins and their use in type 1 and 2 diabetes mellitus by examining their safety, efficacy, manageability and increased therapeutic compliance.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (L.P.); (F.M.); (S.C.)
| | - Laura Priola
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (L.P.); (F.M.); (S.C.)
| | - Francesco Manno
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (L.P.); (F.M.); (S.C.)
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (L.P.); (F.M.); (S.C.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Куркин ДВ, Бакулин ДА, Робертус АИ, Колосов ЮА, Крысанов ИС, Морковин ЕИ, Стрыгин АВ, Горбунова ЮВ, Макаренко ИЕ, Драй РВ, Макарова ЕВ, Павлова ЕВ, Кудрин РА, Иванова ОВ. [Evolution of insulin therapy: past, present, future]. PROBLEMY ENDOKRINOLOGII 2024; 69:86-101. [PMID: 38311998 PMCID: PMC10848184 DOI: 10.14341/probl13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 02/06/2024]
Abstract
2021 marks the 100th anniversary of the discovery of insulin, an event that forever changed the lives of people with diabetes mellitus. At present patients around the world experience the miracle of insulin therapy every day. A disease that used to kill children and teenagers in 2 years in 1920 has become a disease that can be controlled with a possibility to lead a long productive life. Over the past century, the great discovery of Banting, Best and Collip has forever changed the world and saved millions of lives. This review is devoted to the history of the development of insulin and its further improvement: from the moment of discovery to the present days. Various generations of insulin are considered: from animals to modern ultrashort and basal analogues. The article ends with a brief review of current trends in the development of new delivery methods and the development of new insulin molecules. Over the past century, insulin therapy has come a long way, which has significantly improved the quality of life of our patients. But research is actively continuing, including in the field of alternative methods of insulin delivery, which are more convenient for the patient, as well as in the development of «smart» molecules that will have a glucose-dependent effect.
Collapse
Affiliation(s)
- Д. В. Куркин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Д. А. Бакулин
- Волгоградский государственный медицинский университет
| | - А. И. Робертус
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Ю.А
| | - Ю. А. Колосов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - И. С. Крысанов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Е. И. Морковин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - А. В. Стрыгин
- Волгоградский государственный медицинский университет
| | - Ю. В. Горбунова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | | | | | - Е. В. Макарова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Университет Сантьяго де Компостела
| | - Е. В. Павлова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Р. А. Кудрин
- Волгоградский государственный медицинский университет
| | - О. В. Иванова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| |
Collapse
|
7
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
8
|
Salarkia E, Mehdipoor M, Molaakbari E, Khosravi A, Sazegar MR, Salari Z, Rad I, Dabiri S, Joukar S, Sharifi I, Ren G. Exploring mesoporous silica nanoparticles as oral insulin carriers: In-silico and in vivo evaluation. Heliyon 2023; 9:e20430. [PMID: 37810809 PMCID: PMC10556789 DOI: 10.1016/j.heliyon.2023.e20430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
The advancements in nanoscience have brought attention to the potential of utilizing nanoparticles as carriers for oral insulin administration. This study aims to investigate the effectiveness of synthesized polymeric mesoporous silica nanoparticles (MSN) as carriers for oral insulin and their interactions with insulin and IR through in-silico docking. Diabetic rats were treated with various MSN samples, including pure MSN, Amin-grafted MSN/PEG/Insulin (AMPI), Al-grafted MSN/PEG/Insulin (AlMPI), Zinc-grafted MSN/PEG/Insulin (ZNPI), and Co-grafted MSN/PEG/Insulin (CMPI). The nanocomposites were synthesized using a hybrid organic-inorganic method involving MSNs, graphene oxide, and insulin. Characterization of the nanocomposites was conducted using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In vivo tests included the examination of blood glucose levels and histopathological parameters of the liver and pancreas in type 1 diabetic rats. The MSN family demonstrated a significant reduction in blood glucose levels compared to the diabetic control group (p < 0.001). The synthesized nanocomposites exhibited safety, non-toxicity, fast operation, self-repairing pancreas, cost-effectiveness, and high efficiency in the oral insulin delivery system. In the in-silico study, Zn-grafted MSN, Co-grafted MSN, and Al-grafted MSN were selected. Docking results revealed strong interactions between MSN compounds and insulin and IR, characterized by the formation of hydrogen bonds and high binding energy. Notably, Co-grafted MSN showed the highest docking scores of -308.171 kcal/mol and -337.608 kcal/mol to insulin and IR, respectively. These findings demonstrate the potential of polymeric MSN as effective carriers for oral insulin, offering promising prospects for diabetes treatment.
Collapse
Affiliation(s)
- Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdis Mehdipoor
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Elahe Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Sazegar
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Zohreh Salari
- Department of Obstetrics and Gynecology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Rad
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
9
|
Bittner B, Sánchez-Félix M, Lee D, Koynov A, Horvath J, Schumacher F, Matoori S. Drug delivery breakthrough technologies - A perspective on clinical and societal impact. J Control Release 2023; 360:335-343. [PMID: 37364797 DOI: 10.1016/j.jconrel.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The way a drug molecule is administered has always had a profound impact on people requiring medical interventions - from vaccine development to cancer therapeutics. In the Controlled Release Society Fall Symposium 2022, a trans-institutional group of scientists from industry, academia, and non-governmental organizations discussed what a breakthrough in the field of drug delivery constitutes. On the basis of these discussions, we classified drug delivery breakthrough technologies into three categories. In category 1, drug delivery systems enable treatment for new molecular entities per se, for instance by overcoming biological barriers. In category 2, drug delivery systems optimize efficacy and/or safety of an existing drug, for instance by directing distribution to their target tissue, by replacing toxic excipients, or by changing the dosing reqimen. In category 3, drug delivery systems improve global access by fostering use in low-resource settings, for instance by facilitating drug administration outside of a controlled health care institutional setting. We recognize that certain breakthroughs can be classified in more than one category. It was concluded that in order to create a true breakthrough technology, multidisciplinary collaboration is mandated to move from pure technical inventions to true innovations addressing key current and emerging unmet health care needs.
Collapse
Affiliation(s)
- Beate Bittner
- Global Product Strategy, Product Optimization, Grenzacher Strasse 124, 4070 Basel, Switzerland.
| | - Manuel Sánchez-Félix
- Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, MA 02139, USA
| | - Dennis Lee
- Bill & Melinda Gates Foundation, Seattle, WA 98119, United States
| | - Athanas Koynov
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ 07033, United States
| | - Joshua Horvath
- Device and Packaging Development, Genentech, Inc., South San Francisco, CA, United States
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Wong WF, Ang KP, Sethi G, Looi CY. Recent Advancement of Medical Patch for Transdermal Drug Delivery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040778. [PMID: 37109736 PMCID: PMC10142343 DOI: 10.3390/medicina59040778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Transdermal patches are a non-invasive method of drug administration. It is an adhesive patch designed to deliver a specific dose of medication through the skin and into the bloodstream throughout the body. Transdermal drug delivery has several advantages over other routes of administration, for instance, it is less invasive, patient-friendly, and has the ability to bypass first-pass metabolism and the destructive acidic environment of the stomach that occurs upon the oral ingestion of drugs. For decades, transdermal patches have attracted attention and were used to deliver drugs such as nicotine, fentanyl, nitroglycerin, and clonidine to treat various diseases or conditions. Recently, this method is also being explored as a means of delivering biologics in various applications. Here, we review the existing literatures on the design and usage of medical patches in transdermal drug delivery, with a focus on the recent advances in innovation and technology that led to the emergence of smart, dissolvable/biodegradable, and high-loading/release, as well as 3D-printed patches.
Collapse
Affiliation(s)
- Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kuan Ping Ang
- Department of Medical Microbiology, University Malaya Medical Center, Kuala Lumpur 59100, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia
| |
Collapse
|
11
|
Sugumar V, Hayyan M, Madhavan P, Wong WF, Looi CY. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023; 11:biomedicines11030664. [PMID: 36979643 PMCID: PMC10044980 DOI: 10.3390/biomedicines11030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The use of the transdermal delivery system has recently gained ample recognition due to the ability to deliver drug molecules across the skin membrane, serving as an alternative to conventional oral or injectable routes. Subcutaneous insulin injection is the mainstay treatment for diabetes mellitus which often leads to non-compliance among patients, especially in younger patients. Apart from its invasiveness, the long-term consequences of insulin injection cause the development of physical trauma, which includes lipohypertrophy at the site of administration, scarring, infection, and sometimes nerve damage. Hence, there is a quest for a better alternative to drug delivery that is non-invasive and easily adaptable. One of the potential solutions is the transdermal delivery method. However, the stratum corneum (the top layer of skin) is the greatest barrier in transporting large molecules like insulin. Therefore, various chemical enhancers have been proposed to promote stratum corneum permeability, or they are designed to increase the permeability of the full epidermis, such as the use of ionic liquid, peptides, chemical pre-treatment as well as packaging insulin with carriers or nanoparticles. In this review, the recent progress in the development of chemical enhancers for transdermal insulin delivery is discussed along with the possible mechanistic of action and the potential outlook on the proposed permeation approaches in comparison to other therapeutical drugs
Collapse
Affiliation(s)
- Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, P.O. Box 550, Muscat P.C.130, Oman
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Chung Yeng Looi
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| |
Collapse
|
12
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|