1
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2024; 291:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
3
|
Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2070-2085. [PMID: 38489843 DOI: 10.1021/acsabm.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Retinal diseases, such as age-related macular degeneration, diabetic retinopathy, and retinoblastoma, stand as the leading causes of irreversible vision impairment and blindness worldwide. Effectively administering drugs for retinal diseases poses a formidable challenge due to the presence of complex ocular barriers and elimination mechanisms. Over time, various approaches have been developed to fabricate drug delivery systems for improving retinal therapy including virus vectors, lipid nanoparticles, and polymers. However, conventional nanocarriers encounter issues related to the controllability, efficiency, and safety in the retina. Therefore, the development of smart nanocarriers for effective or more invasive long-term treatment remains a desirable goal. Recently, approaches have surfaced for the intelligent design of nanocarriers, leveraging specific responses to external or internal triggers and enabling multiple functions for retinal therapy such as topical administration, prolonged drug release, and site-specific drug delivery. This Review provides an overview of prevalent retinal pathologies and related pharmacotherapies to enhance the understanding of retinal diseases. It also surveys recent developments and strategies employed in the intelligent design of nanocarriers for retinal disease. Finally, the challenges of smart nanocarriers in potential clinical retinal therapeutic applications are discussed to inspire the next generation of smart nanocarriers.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhike Yan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
4
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
5
|
Zheng J, Wang R, Wang Y. New concepts drive the development of delivery tools for sustainable treatment of diabetic complications. Biomed Pharmacother 2024; 171:116206. [PMID: 38278022 DOI: 10.1016/j.biopha.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Diabetic complications, especially diabetic retinopathy, diabetic nephropathy and painful diabetic neuropathy, account for a large portion of patients with diabetes and display rising global prevalence. They are the leading causes of blindness, kidney failure and hypersensitivity to pain caused by diabetes. Current approved therapeutics against the diabetic complications are few and exhibit limited efficacy. The enhanced cell-specificity, stability, biocompatibility, and loading capacity of drugs are essential for the mitigation of diabetic complications. In the article, we have critically discussed the recent studies over the past two years in material sciences and biochemistry. The insightful concepts in these studies drive the development of novel nanoparticles and mesenchymal stem cells-derived extracellular vesicles to meet the need for treatment of diabetic complications. Their underlying biochemical principles, advantages and limitations have been in-depth analyzed. The nanoparticles discussed in the article include double-headed nanodelivery system, nanozyme, ESC-HCM-B system, soft polymer nanostars, tetrahedral DNA nanostructures and hydrogels. They ameliorate the diabetic complication through attenuation of inflammation, apoptosis and restoration of metabolic homeostasis. Moreover, mesenchymal stem cell-derived extracellular vesicles efficiently deliver therapeutic proteins to the retinal cells to suppress the angiogenesis, inflammation, apoptosis and oxidative stress to reverse diabetic retinopathy. Collectively, we provide a critical discussion on the concept, mechanism and therapeutic applicability of new delivery tools to treat these three devastating diabetic complications.
Collapse
Affiliation(s)
- Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
6
|
Teng L, Sun Y, Teng S, Hui P. Applications of nanomaterials in anti-VEGF treatment for ophthalmic diseases. J Biomed Mater Res A 2024; 112:296-306. [PMID: 37850566 DOI: 10.1002/jbm.a.37626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/05/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Angiogenesis has been determined to be essential in the occurrence and metastasis of diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), choroidal neovascularization (CNV), retinopathy of prematurity (ROP), tumor, etc. However, the clinical use of anti-vascular endothelial growth factors (VEGF) drugs is currently limited due to its high cost, potential side effects, and need for repeated injections. In recent years, nanotechnology has shown promising results in inhibiting neovascularization and reducing reactive oxygen species (ROS) or inflammatory factors. Some nanomaterials can also act as vehicles for drug delivery, such as lipid nanoparticles and PLGA. The process of angiogenesis and its molecular mechanism are discussed in this article. At the same time, this study aims to systematically review the research progress of nanotechnology and offer more treatment options for neovascularization-related diseases in clinical ophthalmology.
Collapse
Affiliation(s)
- Lu Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Yabin Sun
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Siying Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Peng Hui
- The First Bethune Hospital of Jilin University, Jilin, China
| |
Collapse
|
7
|
Parashar R, Vyas A, Sah AK, Hemnani N, Thangaraju P, Suresh PK. Recent Updates on Nanocarriers for Drug Delivery in Posterior Segment Diseases with Emphasis on Diabetic Retinopathy. Curr Diabetes Rev 2024; 20:e171023222282. [PMID: 37855359 DOI: 10.2174/0115733998240053231009060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023]
Abstract
In recent years, various conventional formulations have been used for the treatment and/or management of ocular medical conditions. Diabetic retinopathy, a microvascular disease of the retina, remains the leading cause of visual disability in patients with diabetes. Currently, for treating diabetic retinopathy, only intraocular, intravitreal, periocular injections, and laser photocoagulation are widely used. Frequent administration of these drugs by injections may lead to serious complications, including retinal detachment and endophthalmitis. Although conventional ophthalmic formulations like eye drops, ointments, and suspensions are available globally, these formulations fail to achieve optimum drug therapeutic profile due to immediate nasolacrimal drainage, rapid tearing, and systemic tearing toxicity of the drugs. To achieve better therapeutic outcomes with prolonged release of the therapeutic agents, nano-drug delivery materials have been investigated. These nanocarriers include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), dendrimers, nanofibers, in-situ gel, vesicular carriers, niosomes, and mucoadhesive systems, among others. The nanocarriers carry the potential benefits of site-specific delivery and controlled and sustained drug release profile. In the present article, various nanomaterials explored for treating diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Ravi Parashar
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Amber Vyas
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Abhishek K Sah
- Department of Pharmacy, Shri Govindram Seksariya Institute of Technology & Science (SGSITS), 23-Park Road, Indore, 452003 (M.P.), India
| | - Narayan Hemnani
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | | | - Preeti K Suresh
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| |
Collapse
|
8
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
9
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Fatani WK, Aleanizy FS, Alqahtani FY, Alanazi MM, Aldossari AA, Shakeel F, Haq N, Abdelhady H, Alkahtani HM, Alsarra IA. Erlotinib-Loaded Dendrimer Nanocomposites as a Targeted Lung Cancer Chemotherapy. Molecules 2023; 28:molecules28093974. [PMID: 37175381 PMCID: PMC10180382 DOI: 10.3390/molecules28093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.
Collapse
Affiliation(s)
- Wafa K Fatani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fadilah S Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam Abdelhady
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, 925 City Central Avenue, Conroe, TX 77304, USA
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Determination of Ruboxistaurin analysis in rat plasma utilizing LC–MS/MS technique. Saudi Pharm J 2023; 31:547-553. [PMID: 37063445 PMCID: PMC10102418 DOI: 10.1016/j.jsps.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Ruboxistaurin (RBX) used to treat retinopathy in diabetic patients which caused by microvascular damage and leakage which contributes to visual loss. There are no published studies on the use of liquid chromatography-tandem mass spectrometry for development and validation of a simple, sensitive, and accurate method for measuring RBX in rat plasma. Method Chromatographic separation of RBX was achieved using ultra-performance liquid chromatography. Multiple-reaction monitoring quantification used RBX [M + H] + ion at m/z 469.18 and daughter ions at m/z 84, 58.12, and 98.10. Atorvastatin was used as internal standard (IS), has a single daughter ion, and was identified using m/z 559.6 → 249.9. Validation of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for RBX in rat plasma for linearity (greater than0.997) was carried out at 25-1000 ng/mL. Results In rat plasma, the accuracy was within 3.4%, and the intra- and inter-day precision was within 11.8%. Stability, recovery, and matrix effect were all within acceptable limits. The drug retention time (0.85 ± 0.03 min) was remarkably short. Conclusion The method developed in the current study is suitable to quantify RBX in plasma or bulk doses.
Collapse
|
12
|
Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F. Role of Nanotechnology in Overcoming the Multidrug Resistance in Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196608. [PMID: 36235145 PMCID: PMC9571152 DOI: 10.3390/molecules27196608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality around the globe and is likely to become the major cause of global death in the coming years. As per World Health Organization (WHO) report, every year there are over 10 and 9 million new cases and deaths from this disease. Chemotherapy, radiotherapy, and surgery are the three basic approaches to treating cancer. These approaches are aiming at eradicating all cancer cells with minimum off-target effects on other cell types. Most drugs have serious adverse effects due to the lack of target selectivity. On the other hand, resistance to already available drugs has emerged as a major obstacle in cancer chemotherapy, allowing cancer to proliferate irrespective of the chemotherapeutic agent. Consequently, it leads to multidrug resistance (MDR), a growing concern in the scientific community. To overcome this problem, in recent years, nanotechnology-based drug therapies have been explored and have shown great promise in overcoming resistance, with most nano-based drugs being explored at the clinical level. Through this review, we try to explain various mechanisms involved in multidrug resistance in cancer and the role nanotechnology has played in overcoming or reversing this resistance.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Ambreen Shoaib
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (A.S.); (F.S.)
| |
Collapse
|
13
|
Agrahari V, Kumar P. Novel Approaches for Overcoming Biological Barriers. Pharmaceutics 2022; 14:pharmaceutics14091851. [PMID: 36145599 PMCID: PMC9501509 DOI: 10.3390/pharmaceutics14091851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Vibhuti Agrahari
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
- Correspondence: (V.A.); (P.K.)
| | - Prashant Kumar
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Correspondence: (V.A.); (P.K.)
| |
Collapse
|