1
|
Sulyman AO, Yusuf TNA, Aribisala JO, Ibrahim KS, Ajani EO, Ajiboye AT, Sabiu S, Singh K. Quercetin as a Modulator of PTPN22 Phosphomonoesterase Activity: A Biochemical and Computational Evaluation. Curr Issues Mol Biol 2024; 46:11156-11175. [PMID: 39451542 PMCID: PMC11506171 DOI: 10.3390/cimb46100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro. The initial screening identified quercetin with the highest percentage inhibition (81%) among the screened compounds when compared with ursolic acid that has 84%. After the identification of quercetin, we proceeded by investigating the effect of increasing concentrations of the compound on the activity of PTPN22. In vitro studies showed that quercetin inhibited PTPN22 with an IC50 of 29.59 μM, outperforming the reference standard ursolic acid, which had an IC50 of 37.19 μM. Kinetic studies indicated a non-competitive inhibition by quercetin with a Ki of 550 μM. In silico analysis supported these findings, showing quercetin's better binding affinity (ΔGbind -24.56 kcal/mol) compared to ursolic acid, attributed to its higher reactivity and electron interaction capabilities at PTPN22's binding pocket. Both quercetin and ursolic acid improved the structural stability of PTPN22 during simulations. These results suggest quercetin's potential as an anticancer agent, meriting further research. However, in vivo studies and clinical trials are necessary to fully assess its efficacy and safety, and to better understand its mechanisms of action.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
- Department of Nature Conservation, Faculty of Applied Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Tafa Ndagi Akanbi Yusuf
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 1334, South Africa
| | - Kamaldeen Sanni Ibrahim
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 1334, South Africa
| | - Karishma Singh
- Department of Nature Conservation, Faculty of Applied Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| |
Collapse
|
2
|
da Silva AT, Rosa DS, Tavares MRS, Souza RDFS, Navarro DMDAF, de Aguiar JCRDOF, da Silva MV, da Costa MM. Essential oils of Eugenia spp. (myrtaceae) show in vitro antibacterial activity against Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2024:10.1007/s42770-024-01489-6. [PMID: 39190260 DOI: 10.1007/s42770-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Bovine mastitis, an inflammation of the mammary glands, is mainly caused by bacteria such as Staphylococcus aureus. While antibiotics are the primary treatment for this disease, their effectiveness is often diminished due to resistant strains and biofilm formation, creating the need for safer and more efficient therapies. Plant-based oil therapies, particularly those derived from the genus Eugenia, are gaining popularity due to their pharmacological potential and historical use. In this study, we evaluated the antibacterial, antibiofilm, and synergistic potential of essential oils (EOs) from four species of the genus Eugenia (E. brejoensis, E. gracillima, E. pohliana, and E. stictopetala) against S. aureus isolates from bovine mastitis. The EO of E. stictopetala was obtained by hydrodistillation, and its composition was analyzed using gas chromatography coupled with mass spectrometry. The experiment employed seven clinical isolates from mastitis and two control strains: ATCC 33591 (methicillin-resistant S. aureus - MRSA) and ATCC 25923 (methicillin-susceptible and biofilm producer). A broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the EOs and oxacillin. The EO of E. stictopetala contained (E)-caryophyllene (18.01%), β-pinene (8.84%), (E)-nerolidol (8.24%), and α-humulene (6.14%) as major compounds. In the MIC assay, all essential oils showed bactericidal and bacteriostatic effects, especially the species E. brejoensis and E. pohliana, which had MICs ranging from 64 to 256 µg/mL. Regarding the antibiofilm effect, all essential oils were capable of interfering with biofilm formation at subinhibitory concentrations of ½ and ¼ of the MIC. However, they did not significantly affect pre-established biofilms. Additionally, a synergistic interaction was detected between the EOs and oxacillin, with a reduction of 75-93.75% in the antimicrobial MIC. Molecular docking studies indicated that the phytochemicals β-(E)-caryophyllene, (E)-nerolidol, Δ-elemene, and α-cadinol present in the EOs formed more stable complexes with penicillin-binding proteins, indicating a possible mechanism of antibacterial action. Therefore, these results show that the essential oils of Eugenia spp. are promising sources for the development of new therapeutic methods, opening new perspectives for a more effective treatment of bovine mastitis.
Collapse
Affiliation(s)
- Alisson Teixeira da Silva
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Danillo Sales Rosa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Marcio Rennan Santos Tavares
- Federal Institute of the Sertão Pernambucano (IF Sertão), Campus Petrolina Rural Area, Petrolina, Pernambuco, CEP 56302-970, Brazil
| | - Renata de Faria Silva Souza
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | | | | | - Márcia Vanusa da Silva
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, CEP 50670-901, Brazil
| | - Mateus Matiuzzi da Costa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil.
| |
Collapse
|
3
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Metabolites profiling and cheminformatics bioprospection of selected medicinal plants against the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2024; 42:6740-6760. [PMID: 37464870 DOI: 10.1080/07391102.2023.2236718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Despite the existence of some vaccines, SARS-CoV-2 (S-2) infections persist for various reasons relating to vaccine reluctance, rapid mutation rate, and an absence of specific treatments targeted to the infection. Due to their availability, low cost and low toxicity, research into potentially repurposing phytometabolites as therapeutic alternatives has gained attention. Therefore, this study explored the antiviral potential of metabolites of some medicinal plants [Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum (Sesame plant)] identified using liquid chromatography-mass spectrometry (LCMS) as possible inhibitory agents against the S-2 main protease (S-2 MP) and RNA-dependent RNA polymerase (RP) using computational approaches. Molecular docking was used to identify the compounds with the best affinities for the selected therapeutics targets. Afterwards, compounds with poor physicochemical characteristics, pharmacokinetics, and drug-likeness were screened out. The top-ranked compounds were further subjected to a 120-ns molecular dynamics (MD) simulation. Only quercetin 3-O-rhamnoside (-48.77 kcal/mol) had higher binding free energy than the reference standard (zafirlukast) (-44.99 kcal/mol) against S-2 MP. Conversely, all the top-ranked compounds (ellagic acid hexoside, spiraeoside, apigenin-4'-glucoside and chrysoeriol 7-glucuronide) except gnetin L (-24.24 kcal/mol) had higher binding free energy (-55.19 kcal/mol, -52.75 kcal/mol, -47.22 kcal/mol and -43.35 kcal/mol) respectively, against S-2 RP relative to the reference standard (-34.79 kcal/mol). The MD simulations study further revealed that the investigated inhibitors are thermodynamically stable and form structurally compatible complexes that impede the regular operation of the respective S-2 therapeutic targets. Although, these S-2 therapeutic candidates are promising, further in vitro and in vivo evaluation is required and highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-staphylococcal activity of a polyphenol-rich citrus extract: synergy with β-lactams and low proficiency to induce resistance. Front Microbiol 2024; 15:1415400. [PMID: 39021634 PMCID: PMC11252074 DOI: 10.3389/fmicb.2024.1415400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Antibiotic resistance represents one of the most significant threats to public health in the 21st century. Polyphenols, natural molecules with antibacterial activity produced by plants, are being considered as alternative antimicrobial strategies to manage infections caused by drug-resistant bacteria. In this study, we investigated the antibacterial activity of a polyphenol mixture extracted from citrus fruits, against both antibiotic-susceptible and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. Methods Broth microdilution and time-kill curve experiments were used to test the extract anti-staphylococcal activity. Cytotoxicity was assessed by the hemolysis assay. The interaction between the mixture and antibiotics was investigated by the checkerboard assay. The effect of B alone and in combination with oxacillin on the membrane potential was investigated by the 3,3'-dipropylthiadicarbocyanine iodide assay. The ability of the extract to induce the development of resistance was verified by propagating S. aureus for 10 transfers in the presence of sub-inhibitory concentrations. Results The citrus extract was found to be active against all Staphylococcus strains at remarkably low concentrations (0.0031 and 0.0063%), displaying rapid bactericidal effects without being toxic on erythrocytes. In particular, B was found to rapidly cause membrane depolarization. When combined with methicillin, meropenem, and oxacillin, the mixture displayed synergistic activity exclusively against methicillin-resistant strains. We additionally show that the sequential exposure of S. aureus to sub-inhibitory concentrations did not induce the development of resistance against the extract. Discussion Overall, these findings support the potential use of the citrus extract as promising option to manage staphylococcal infections and suggest that it may counteract the mechanism behind methicillin-resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Aribisala JO, S'thebe NW, Sabiu S. In silico exploration of phenolics as modulators of penicillin binding protein (PBP) 2× of Streptococcus pneumoniae. Sci Rep 2024; 14:8788. [PMID: 38627456 PMCID: PMC11021432 DOI: 10.1038/s41598-024-59489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Infections caused by multidrug-resistant Streptococcus pneumoniae remain the leading cause of pneumonia-related deaths in children < 5 years globally, and mutations in penicillin-binding protein (PBP) 2 × have been identified as the major cause of resistance in the organism to beta-lactams. Thus, the development of new modulators with enhanced binding of PBP2x is highly encouraged. In this study, phenolics, due to their reported antibacterial activities, were screened against the active site of PBP2x using structure-based pharmacophore and molecular docking techniques, and the ability of the top-hit phenolics to inhibit the active and allosteric sites of PBP2x was refined through 120 ns molecular dynamic simulation. Except for gallocatechin gallate and lysidicichin, respectively, at the active and allosteric sites of PBP2x, the top-hit phenolics had higher negative binding free energy (ΔGbind) than amoxicillin [active site (- 19.23 kcal/mol), allosteric site (- 33.75 kcal/mol)]. Although silicristin had the best broad-spectrum effects at the active (- 38.41 kcal/mol) and allosteric (- 50.54 kcal/mol) sites of PBP2x, the high thermodynamic entropy (4.90 Å) of the resulting complex might suggest the need for its possible structural refinement for enhanced potency. Interestingly, silicristin had a predicted synthetic feasibility score of < 5 and quantum calculations using the DFT B3LYP/6-31G+ (dp) revealed that silicristin is less stable and more reactive than amoxicillin. These findings point to the possible benefits of the top-hit phenolics, and most especially silicristin, in the direct and synergistic treatment of infections caused by S. pneumoniae. Accordingly, silicristin is currently the subject of further confirmatory in vitro research.
Collapse
Affiliation(s)
- Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nosipho Wendy S'thebe
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Mjokane N, Sabiu S, Folorunso OS, Gcilitshana OMN, Albertyn J, Pohl CH, Sebolai OM. Cryptococcal proteases exhibit the potential to activate the latent SARS-CoV-2 spike protein. J Infect Public Health 2024; 17:263-270. [PMID: 38128410 DOI: 10.1016/j.jiph.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has affected more than 650 million people and resulted in over 6.8 million deaths. Notably, the disease could co-manifest with microbial infections, like cryptococcosis, which also presents as a primary lung infection. OBJECTIVE In this contribution, we sought to determine if cryptococcal supernatant (which contains secreted furin-like proteases) could activate the SARS-CoV-2 spike protein. METHODS Molecular docking of the crystal structures of the SARS-CoV-2 spike protein (target) and selected cryptococcal proteases (ligands) was executed using the high ambiguity driven protein-protein docking (HADDOCK) server, with the furin protease serving as a reference ligand. The furin protease is found in human cells and typically activates the SARS-CoV-2 spike protein. Importantly, in order to provide experimental evidence for enzymatic activity, we also assessed the biochemical efficiency of cryptococcal proteases to initiate viral entry into HEK-293 T cells by SARS-CoV-2 spike pseudotyped Lentivirus. RESULTS We show that the selected cryptococcal proteases could interact with the spike protein, and some had a better or comparable binding affinity for the spike protein than furin protease following an in silico comparative analysis of the molecular docking parameters. Furthermore, it was noted that the biochemical efficiency of the cryptococcal supernatant to transduce HEK-293 T cells with SARS-CoV-2 pseudovirions was comparable (p > 0.05) to that of recombinant furin. CONCLUSIONS Taken together, these data show that cryptococcal proteases could activate the SARS-CoV-2 spike protein. In practice, it may be critical to determine if patients have an underlying cryptococcal infection, as this microbe could secrete proteases that may further activate the SARS-CoV-2 viral particles, thus undermining COVID-19 intervention measures.
Collapse
Affiliation(s)
- Nozethu Mjokane
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, 121 Steve Biko Road, Berea Durban 4001, South Africa
| | - Olufemi S Folorunso
- Harvard Medical School, Department of Ophthalmology, Boston, MA, United States
| | - Onele M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa.
| |
Collapse
|
7
|
Bhogal I, Pankaj V, Provaznik V, Roy S. In silico investigation of cholesterol-lowering drugs to find potential inhibitors of dehydrosqualene synthase in Staphylococcus aureus. 3 Biotech 2024; 14:39. [PMID: 38261920 PMCID: PMC10794677 DOI: 10.1007/s13205-023-03862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024] Open
Abstract
Staphylococcus aureus is a lethal pathogen that can cause various bacterial infections. This study targets the CrtM enzyme of S. aureus, which is crucial for synthesizing golden carotenoid pigment: staphyloxanthin, which provides anti-oxidant activity to this bacterium for combating antimicrobial resistance inside the host cell. The present investigation quests for human SQS inhibitors against the CrtM enzyme by employing structure-based drug design approaches including induced fit docking (IFD), molecular dynamic (MD) simulations, and binding free energy calculations. Depending upon the docking scores, two compounds, lapaquistat acetate and squalestatin analog 20, were identified as the lead molecules exhibit higher affinity toward the CrtM enzyme. These docked complexes were further subjected to 100 ns MD simulation and several thermodynamics parameters were analyzed. Further, the binding free energies (ΔG) were calculated for each simulated protein-ligand complex to study the stability of molecular contacts using the MM-GBSA approach. Pre-ADMET analysis was conducted for systematic evaluation of physicochemical and medicinal chemistry properties of these compounds. The above study suggested that lapaquistat acetate and squalestatin analog 20 can be selected as potential lead candidates with promising binding affinity for the S. aureus CrtM enzyme. This study might provide insights into the discovery of potential drug candidates for S. aureus with a high therapeutic index. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03862-y.
Collapse
Affiliation(s)
- Inderjeet Bhogal
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Vaishali Pankaj
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| |
Collapse
|
8
|
Aribisala JO, Sabiu S. Cheminformatics identification of phenolics as modulators of penicillin-binding protein-3 of Pseudomonas aeruginosa towards interventive antibacterial therapy. J Biomol Struct Dyn 2024; 42:298-313. [PMID: 36974951 DOI: 10.1080/07391102.2023.2192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Antibacterial resistance to β-lactams in microorganisms has been attributed majorly to alterations in penicillin-binding proteins (PBPs) coupled with β-lactams' inactivation by β-lactamase. Consequently, the identification of a novel class of therapeutics with improved modulatory action on the PBPs is imperative and plant secondary metabolites, including phenolics, have found relevance in this regard. For the first time in this study, the over 10,000 phenolics currently known were computationally evaluated against PBP3 of Pseudomonas aeruginosa, a superbug implicated in several nosocomial infections. In doing this, a library of phenolics with an affinity for PBP3 of P. aeruginosa was screened using structure-activity relationship-based pharmacophore and molecular docking approaches. Subsequent thermodynamic screening of the top five phenolics with higher docking scores, more drug-likeness attributes, and feasible synthetic accessibility was achieved through a 120 ns molecular dynamic (MD) simulation. Four of the top five hits had higher binding free energy than cefotaxime (-18.72 kcal/mol), with catechin-3-rhamside having the highest affinity (-28.99 kcal/mol). All the hits were stable at the active site of the PBP3, with catechin-3-rhamside being the most stable (2.14 Å), and established important interactions with Ser294, implicated in the catalytic activity of PBP3. Also, PBP3 became more compact with less fluctuation of the active site amino acid residues following the binding of the hits. These observations are indicative of the potential of the test compounds as PBP3 inhibitors, with catechin-3-rhamside being the most prominent of the compounds that could be further improved for enhanced druggability against PBP3 in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
9
|
Akoonjee A, Lanrewaju AA, Balogun FO, Makunga NP, Sabiu S. Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:1509. [PMID: 38132335 PMCID: PMC10740667 DOI: 10.3390/biology12121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or defective insulin production in the human body. Although the antidiabetic action of corn silk (CS) is well-established, the understanding of the mechanism of action (MoA) behind this potential is lacking. Hence, this study aimed to elucidate the MoA in different samples (raw and three extracts: aqueous, hydro-ethanolic, and ethanolic) as a therapeutic agent for the management of T2DM using metabolomic profiling and computational techniques. Ultra-performance liquid chromatography-mass spectrometry (UP-LCMS), in silico techniques, and density functional theory were used for compound identification and to predict the MoA. A total of 110 out of the 128 identified secondary metabolites passed the Lipinski's rule of five. The Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed the cAMP pathway as the hub signaling pathway, in which ADORA1, HCAR2, and GABBR1 were identified as the key target genes implicated in the pathway. Since gallicynoic acid (-48.74 kcal/mol), dodecanedioc acid (-34.53 kcal/mol), and tetradecanedioc acid (-36.80 kcal/mol) interacted well with ADORA1, HCAR2, and GABBR1, respectively, and are thermodynamically stable in their formed compatible complexes, according to the post-molecular dynamics simulation results, they are suggested as potential drug candidates for T2DM therapy via the maintenance of normal glucose homeostasis and pancreatic β-cell function.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Nokwanda Pearl Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| |
Collapse
|
10
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Cheminformatics bioprospection of selected medicinal plants metabolites against trypsin cleaved VP4 (spike protein) of rotavirus A. J Biomol Struct Dyn 2023:1-20. [PMID: 37728550 DOI: 10.1080/07391102.2023.2258405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Rotaviruses have continued to be the primary cause of acute dehydrating diarrhoea in children under five years of age despite the global introduction of four World Health Organization (WHO) prequalified oral vaccines in over 106 countries. Currently, no medication is approved by the Food and Drug Administration (FDA) specifically for treating rotavirus A-induced diarrhoea. Consequently, it is important to focus on developing prophylactic and curative therapeutics to combat rotaviral infections. For the first time, this study computationally screened and identified metabolites from Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum as potential novel inhibitors with broad-spectrum activity against VP5* and VP8* (spike protein) of rotavirus A (RVA). The initial top 20 metabolites identified through molecular docking were further filtered using drug-likeness and pharmacokinetics parameters. The molecular properties of the resulting top-ranked compounds were predicted by conducting density functional theory (DFT) calculations, while molecular dynamics (MD) simulation revealed their thermodynamic compatibility with a significant affinity towards VP8* than VP5*. Except for ellagic acid (-11.78 kcal/mol), the lead compounds had higher binding free energy than the reference standard (VP5* (-11.81 kcal/mol), VP8* (-14.12 kcal/mol)) with 2SG (-20.98 kcal/mol) and apigenin-4'-glucoside (-23.56 kcal/mol) having the highest affinity towards VP5* and VP8*, respectively. Of all the top-ranked compounds, better broad-spectrum affinities for both VP5* and VP8* than tizoxanide were observed in 2SG (VP5* (-20.98 kcal/mol), VP8* (-20.13 kcal/mol)) and sericetin (VP5* (-20.46 kcal/mol), VP8* (-18.31 kcal/mol)). While the identified leads could be regarded as potential modulators of the investigated therapeutic targets for effective management of rotaviral infection, additional in vitro and in vivo evaluation is strongly recommended, and efforts are on-going in this regard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
11
|
Murali M, Ahmed F, Gowtham HG, Aribisala JO, Abdulsalam RA, Shati AA, Alfaifi MY, Sayyed RZ, Sabiu S, Amruthesh KN. Exploration of CviR-mediated quorum sensing inhibitors from Cladosporium spp. against Chromobacterium violaceum through computational studies. Sci Rep 2023; 13:15505. [PMID: 37726386 PMCID: PMC10509224 DOI: 10.1038/s41598-023-42833-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Faiyaz Ahmed
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, 51452, Buraydah, Saudi Arabia
| | | | - Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Ali A Shati
- Faculty of Science, Biology Department, King Khalid University, 9004, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Faculty of Science, Biology Department, King Khalid University, 9004, Abha, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa.
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, India.
| |
Collapse
|
12
|
Sulyman AO, Aje OO, Ajani EO, Abdulsalam RA, Balogun FO, Sabiu S. Bioprospection of Selected Plant Secondary Metabolites as Modulators of the Proteolytic Activity of Plasmodium falciparum Plasmepsin V. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6229503. [PMID: 37388365 PMCID: PMC10307063 DOI: 10.1155/2023/6229503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Malaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria. The pepsin-like aspartic protease anchored in the endoplasmic reticulum is responsible for the trafficking of parasite-derived proteins to the erythrocytic surface of the host cells. In this study, a small library of compounds was preliminarily screened in vitro to identify novel modulators of Plasmodium falciparum plasmepsin V (PfPMV). The results obtained revealed kaempferol, quercetin, and shikonin as possible PfPMV inhibitors, and these compounds were subsequently probed for their inhibitory potentials using in vitro and in silico methods. Kaempferol and shikonin noncompetitively and competitively inhibited the specific activity of PfPMV in vitro with IC50 values of 22.4 and 43.34 μM, respectively, relative to 62.6 μM obtained for pepstatin, a known aspartic protease inhibitor. Further insight into the structure-activity relationship of the compounds through a 100 ns molecular dynamic (MD) simulation showed that all the test compounds had a significant affinity for PfPMV, with quercetin (-36.56 kcal/mol) being the most prominent metabolite displaying comparable activity to pepstatin (-35.72 kcal/mol). This observation was further supported by the compactness and flexibility of the resulting complexes where the compounds do not compromise the structural integrity of PfPMV but rather stabilized and interacted with the active site amino acid residues critical to PfPMV modulation. Considering the findings in this study, quercetin, kaempferol, and shikonin could be proposed as novel aspartic protease inhibitors worthy of further investigation in the treatment of malaria.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Oluwapelumi Oluwaseun Aje
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
13
|
Spanakis M. In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics 2023; 15:pharmaceutics15031014. [PMID: 36986874 PMCID: PMC10054111 DOI: 10.3390/pharmaceutics15031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Personalized/precision medicine (PM) originates from the application of molecular pharmacology in clinical practice, representing a new era in healthcare that aims to identify and predict optimum treatment outcomes for a patient or a cohort with similar genotype/phenotype characteristics [...].
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, GR-71003 Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research & Technology-Hellas, GR-71110 Heraklion, Greece
| |
Collapse
|
14
|
Molecular Modeling Identification of Key Secondary Metabolites from Xylopia aethiopica as Promising Therapeutics Targeting Essential Measles Viral Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1575358. [PMID: 36818222 PMCID: PMC9935805 DOI: 10.1155/2023/1575358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
This study computationally screened three key compounds (vanillin (VAN), oxophoebine (OPB), and dihydrochalcone (DHC)) derived from Xylopia aethiopica (Guinea pepper), a medicinal plant with known antiviral activity, against key druggable measles virus (MV) proteins (fusion protein (FUP), haemagglutinin protein (HMG), and phosphoprotein (PSP)). Each molecular species was subjected to a 100 ns molecular dynamics (MD) simulation following docking, and a range of postdynamic parameters including free binding energy and pharmacokinetic properties were determined. The docking scores of the resulting OPB-FUP (-5.4 kcal/mol), OPB-HMG (-8.1 kcal/mol), and OPB-PSP (-8.0 kcal/mol) complexes were consistent with their respective binding energy values (-25.37, -28.74, and -40.68 kcal/mol), and higher than that of the reference standard, ribavirin (RBV) in each case. Furthermore, all the investigated compounds were thermodynamically compact and stable, especially HMG of MV, and this observation could be attributed to the resulting intermolecular interactions in each system. Overall, OPB may possess inhibitory properties against MV glycoproteins (FUP and HMG) and PSP that play important roles in the replication of MV and measles pathogenesis. While OPB could serve as a scaffold for the development of novel MV fusion and entry inhibitors, further in vitro and in vivo evaluation is highly recommended.
Collapse
|
15
|
Akoonjee A, Rampadarath A, Aruwa CE, Ajiboye TA, Ajao AAN, Sabiu S. Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites 2022; 12:1013. [PMID: 36355096 PMCID: PMC9692680 DOI: 10.3390/metabo12111013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Abstract
The medicinal herb Aspalathus linearis (rooibos) is globally recognized in type-2 diabetes mellitus (T2DM) treatment due to its known and distinctive compounds. This work utilized network pharmacology (NP) coupled with molecular dynamics simulation in gaining new insight into the anti-diabetic molecular mechanism of action of rooibos teas. It looked at the interactions between rooibos constituents with various relevant protein receptors and signaling routes associated with T2DM progression. The initial analysis revealed 197 intersecting gene targets and 13 bioactive rooibos constituents linked to T2DM. The interactions between proteins and compounds to the target matrix were generated with the Cystoscope platform and STRING database. These analyses revealed intersecting nodes active in T2DM and hypoxia-inducible factor 1 (HIF-1) as an integral receptors target. In addition, KEGG analysis identified 11 other pathways besides the hub HIF-1 signaling route which may also be targeted in T2DM progression. In final molecular docking and dynamics simulation analysis, a significant binding affinity was confirmed for key compound-protein matrices. As such, the identified rooibos moieties could serve as putative drug candidates for T2DM control and therapy. This study shows rooibos constituents' interaction with T2DM-linked signaling pathways and target receptors and proposes vitexin, esculin and isovitexin as well as apigenin and kaempferol as respective pharmacologically active rooibos compounds for the modulation of EGFR and IGF1R in the HIF-1 signaling pathway to maintain normal homeostasis and function of the pancreas and pancreatic β-cells in diabetics.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Athika Rampadarath
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | | - Abdulwakeel Ayokun-nun Ajao
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
16
|
Balogun FO, Naidoo K, Aribisala JO, Pillay C, Sabiu S. Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy. Metabolites 2022; 12:metabo12100937. [PMID: 36295839 PMCID: PMC9608993 DOI: 10.3390/metabo12100937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Recently, dipeptidyl peptidase-IV (DPP-IV) has become an effective target in the management of type-2 diabetes mellitus (T2D). The study aimed to determine the efficacy of shikimate pathway-derived phenolic acids as potential DPP-IV modulators in the management of T2D. The study explored in silico (molecular docking and dynamics simulations) and in vitro (DPP-IV inhibitory and kinetics assays) approaches. Molecular docking findings revealed chlorogenic acid (CA) among the examined 22 phenolic acids with the highest negative binding energy (−9.0 kcal/mol) showing a greater affinity for DPP-IV relative to the standard, Diprotin A (−6.6 kcal/mol). The result was corroborated by MD simulation where it had a higher affinity (−27.58 kcal/mol) forming a more stable complex with DPP-IV than Diprotin A (−12.68 kcal/mol). These findings were consistent with in vitro investigation where it uncompetitively inhibited DPP-IV having a lower IC50 (0.3 mg/mL) compared to Diprotin A (0.5 mg/mL). While CA showed promising results as a DPP-IV inhibitor, the findings from the study highlighted the significance of medicinal plants particularly shikimate-derived phenolic compounds as potential alternatives to synthetic drugs in the effective management of T2DM. Further studies, such as derivatisation for enhanced activity and in vivo evaluation are suggested to realize its full potential in T2D therapy.
Collapse
|