1
|
Ge R, Zhao H, Tang Q, Chandarajoti K, Bai H, Wang X, Zhang K, Ye W, Han X, Wang C, Zhou W. A novel α-mangostin derivative synergistic to antibiotics against MRSA with unique mechanisms. Microbiol Spectr 2024; 12:e0163124. [PMID: 39508612 PMCID: PMC11619392 DOI: 10.1128/spectrum.01631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading cause of hospital-acquired infections, often linked to complicated treatments, increased mortality risk, and significant cost burdens. Several antibacterial agents have been developed to address MRSA resistance. In this study, potential agents to combat MRSA resistance were explored, with the antibacterial activity of synthesized α-mangostin (α-MG) derivatives being evaluated alongside investigations into their cellular mechanisms against MRSA2. α-MG-4, featuring an allyl group at C3 of the lead compound α-MG, restored the sensitivity of MRSA2 to penicillin, enrofloxacin, and gentamicin, while also demonstrating improved safety profiles. Although α-MG-4 alone was ineffective against MRSA2, it exhibited an optimal synergistic ratio in vitro when combined with these antibiotics. This significant synergistic antibacterial effect was further confirmed in vivo using a mouse skin abscess model. Additionally, the synergistic mechanisms revealed that α-MG-4 was associated with changes in membrane permeability and inhibition of the MepA and NorA genes, which encode the efflux pumps of MRSA2. α-MG-4 also inhibited PBP2a expression, potentially by occupying a crucial binding site in a dose-dependent manner.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA)'s resistance to multiple antibiotics poses significant health and safety concerns. A novel α-mangostin (α-MG) derivative, α-MG-4, was first identified as a xanthone-based PBP2a inhibitor that reverses MRSA2 resistance to penicillin. The synergistic antibacterial effects of α-MG-4 were linked to increased cell membrane permeability and the inhibition of genes involved in efflux pump function.
Collapse
Affiliation(s)
- Rile Ge
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Han Bai
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
3
|
de Souza GH, Vaz MS, Dos Santos Radai JA, Fraga TL, Rossato L, Simionatto S. Synergistic interaction of polymyxin B with carvacrol: antimicrobial strategy against polymyxin-resistant Klebsiella pneumoniae. Future Microbiol 2024; 19:181-193. [PMID: 38329374 DOI: 10.2217/fmb-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 02/09/2024] Open
Abstract
Objective: The antimicrobial activities of the synergistic combination of carvacrol and polymyxin B against polymyxin-resistant Klebsiella pneumoniae were evaluated. Methods: The methods employed checkerboard assays to investigate synergism, biofilm inhibition assessment and membrane integrity assay. In addition, the study included in vivo evaluation using a mouse infection model. Results: The checkerboard method evaluated 48 combinations, with 23 indicating synergistic action. Among these, carvacrol 10 mg/kg plus polymyxin B 2 mg/kg exhibited in vivo antimicrobial activity in a mouse model of infection, resulting in increased survival and a significant decrease in bacterial load in the blood. Conclusion: Polymyxin in synergy with carvacrol represents a promising alternative to be explored in the development of new antimicrobials.
Collapse
Affiliation(s)
- Gleyce Ha de Souza
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Marcia Sm Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Joyce A Dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Thiago L Fraga
- Centro Universitário da Grande Dourados - UNIGRAN, Dourados, Mato Grosso do Sul, 79824-900, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| |
Collapse
|
4
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Group A β-hemolytic Streptococcal Pharyngitis: An Updated Review. Curr Pediatr Rev 2024; 21:2-17. [PMID: 37493159 DOI: 10.2174/1573396320666230726145436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Group A ß-hemolytic Streptococcus (GABHS) is the leading bacterial cause of acute pharyngitis in children and adolescents worldwide. OBJECTIVE This article aims to familiarize clinicians with the clinical manifestations, evaluation, diagnosis, and management of GABHS pharyngitis. METHODS A search was conducted in December 2022 in PubMed Clinical Queries using the key term "group A β-hemolytic streptococcal pharyngitis". This review covers mainly literature published in the previous ten years. RESULTS Children with GABHS pharyngitis typically present with an abrupt onset of fever, intense pain in the throat, pain on swallowing, an inflamed pharynx, enlarged and erythematous tonsils, a red and swollen uvula, enlarged tender anterior cervical lymph nodes. As clinical manifestations may not be specific, even experienced clinicians may have difficulties diagnosing GABHS pharyngitis solely based on epidemiologic or clinical grounds alone. Patients suspected of having GABHS pharyngitis should be confirmed by microbiologic testing (e.g., culture, rapid antigen detection test, molecular point-of-care test) of a throat swab specimen prior to the initiation of antimicrobial therapy. Microbiologic testing is generally unnecessary in patients with pharyngitis whose clinical and epidemiologic findings do not suggest GABHS. Clinical score systems such as the Centor score and McIssac score have been developed to help clinicians decide which patients should undergo diagnostic testing and reduce the unnecessary use of antimicrobials. Antimicrobial therapy should be initiated without delay once the diagnosis is confirmed. Oral penicillin V and amoxicillin remain the drugs of choice. For patients who have a non-anaphylactic allergy to penicillin, oral cephalosporin is an acceptable alternative. For patients with a history of immediate, anaphylactic-type hypersensitivity to penicillin, oral clindamycin, clarithromycin, and azithromycin are acceptable alternatives. CONCLUSION Early diagnosis and antimicrobial treatment are recommended to prevent suppurative complications (e.g., cervical lymphadenitis, peritonsillar abscess) and non-suppurative complications (particularly rheumatic fever) as well as to reduce the severity of symptoms, to shorten the duration of the illness and to reduce disease transmission.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Barankin
- Department of Dermatology, Toronto Dermatology Centre, Toronto, Ontario, Canada
| | - Kin F Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam L Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|