1
|
Pieretti JC, Horne TL, García-Villasante N, Seabra AB, Muntané J. Zinc-Based Nanoparticles, but Not Silicon-Based Nanoparticles, Accumulate in Mitochondria and Promote Cell Death in Liver Cancer Cells. Int J Nanomedicine 2024; 19:12409-12420. [PMID: 39606560 PMCID: PMC11600939 DOI: 10.2147/ijn.s474643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the main hepatic primary malignancy. Patients with advanced HCC receiving the recommended therapies have a poor outcome. In different settings, nanotechnology has gained attraction as a potential alternative strategy for improving therapeutic effectiveness. Among several nanoparticles (NPs), inorganic NPs, such as zinc and silicon oxides (ZnO and SiO2), are mainly chosen as drug nanocarriers, as both present great adsorption properties and biocompatibility. Aim The objective is to identify the molecular mechanisms underlying the proapoptotic effects of ZnO and SiO2 NPs in differentiated hepatoblastoma cells (HepG2) and mesenchymal liver cancer cells (SNU449). Methods Dose-dependent induction of cell cytotoxicity by ZnO and SiO2 NPs (5 to 50 µg/mL) was determined in HepG2 and SNU449 cells. NPs intracellular localization was assessed using transmission electron microscopy (TEM). Cell death was determined by trypan blue staining and caspase-3 and -8 activities. Cell respiration was determined using MitroStress assay (Seahorse, Agilent). Results ZnO NPs, but not SiO2 NPs, reduced cell viability in HepG2 and SNU449. Interestingly, SNU449 appeared to be more susceptible than HepG2 to ZnO NPs (IC50 of 27.4 ± 1.4 µg/mL and 41.8 ± 0.4 µg/mL, respectively). SiO2 NPs tended to be localized in lysosomes in both cell lines, while ZnO NPs demonstrated a random distribution with a high presence in mitochondria and related structures. As expected, SiO2 NPs did not reduce cell survival and cell respiration, while ZnO NPs promoted cell death and decreased oxygen consumption rate. ZnO NPs mitochondrial accumulation was associated with increased apoptosis in HepG2, while necroapoptosis was mainly involved in ZnO-induced cell death in SNU449. Conclusion SiO2 demonstrated no cytotoxic profile against liver cancer cells. ZnO NPs demonstrated to accumulate in mitochondria impacting cell respiration and cell death in liver cancer cells. ZnO induced apoptosis and necroptosis in HepG2 and SNU449, respectively.
Collapse
Affiliation(s)
- Joana C Pieretti
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Thaissa L Horne
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
| | - Natalia García-Villasante
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Fayaz R, Farahpour MR, Tabatabaei ZG. The effects of bioactive glass hydrogel coated with hyaluronic acid-Pluronic F-127 conjugates containing silver nanoparticles for accelerating of infected wounds healing. Int J Pharm 2024; 664:124448. [PMID: 38986967 DOI: 10.1016/j.ijpharm.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Antimicrobial resistance has forced researchers to produce new dressings for the treatment of infected wounds. Tissue engineering based on biomaterials is used to accelerate the wound healing process. The purpose of this study was to examine the effects of bioactive glass (BG) hydrogel coated with hyaluronic acid (HA)-Pluronic F-127 (PLF-127) conjugates containing silver nanoparticles (AgNPs) for healing the infected wounds. HA/BG, PL&HA/BG and PL&HA/BG-AgNPs formulations were designed and their properties were evaluated for application in the wound healing process. Safety and antibacterial properties of formulations were also evaluated. These were applied for the treatment of infected wounds and their efficiencies were assessed by measuring wound contraction, total bacterial count, pathological parameters and the expression of positive cells of cyclin-D1, c-Myc, WNT-1, B-Catenin, and COL-1A. The synthesized thermally reversible hydrogels demonstrated sol-gel transition, indicating the gels' potential as injectable hydrogels. These exhibited antibacterial properties and safety. The PL&HA/BG-AgNPs, PL&HA/BG and HA/BG hydrogels showed greatest wound healing activities, respectively and could compete with Polysporin® due to their effects on total bacterial count and modulation in increasing the expressions of B-Catenin, COL-1A, cyclin-D1 and c-Myc. In sum, PL&HA/BG-AgNP hydrogels are good candidate for accelerating the wound healing process and as alternatives for antibiotics in the treatment of infected wounds.
Collapse
Affiliation(s)
- Reza Fayaz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
3
|
Gao X, Caruso BR, Li W. Advanced Hydrogels in Breast Cancer Therapy. Gels 2024; 10:479. [PMID: 39057502 PMCID: PMC11276203 DOI: 10.3390/gels10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common malignancy among women and is the second leading cause of cancer-related death for women. Depending on the tumor grade and stage, breast cancer is primarily treated with surgery and antineoplastic therapy. Direct or indirect side effects, emotional trauma, and unpredictable outcomes accompany these traditional therapies, calling for therapies that could improve the overall treatment and recovery experiences of patients. Hydrogels, biomimetic materials with 3D network structures, have shown great promise for augmenting breast cancer therapy. Hydrogel implants can be made with adipogenic and angiogenic properties for tissue integration. 3D organoids of malignant breast tumors grown in hydrogels retain the physical and genetic characteristics of the native tumors, allowing for post-surgery recapitulation of the diseased tissues for precision medicine assessment of the responsiveness of patient-specific cancers to antineoplastic treatment. Hydrogels can also be used as carrier matrices for delivering chemotherapeutics and immunotherapeutics or as post-surgery prosthetic scaffolds. The hydrogel delivery systems could achieve localized and controlled medication release targeting the tumor site, enhancing efficacy and minimizing the adverse effects of therapeutic agents delivered by traditional procedures. This review aims to summarize the most recent advancements in hydrogel utilization for breast cancer post-surgery tissue reconstruction, tumor modeling, and therapy and discuss their limitations in clinical translation.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Benjamin R. Caruso
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
GAO HUAN, ZHANG JIE, KLEIJN TONYG, WU ZHAOYONG, LIU BING, MA YUJIN, DING BAOYUE, YIN DONGFENG. Dual ligand-targeted Pluronic P123 polymeric micelles enhance the therapeutic effect of breast cancer with bone metastases. Oncol Res 2024; 32:769-784. [PMID: 38560569 PMCID: PMC10972726 DOI: 10.32604/or.2023.044276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 04/04/2024] Open
Abstract
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival. The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect. To improve the treatment efficacy, we developed Pluronic P123 (P123)-based polymeric micelles dually decorated with alendronate (ALN) and cancer-specific phage protein DMPGTVLP (DP-8) for targeted drug delivery to breast cancer bone metastases. Doxorubicin (DOX) was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity (3.44%). The DOX-loaded polymeric micelles were spherical, 123 nm in diameter on average, and exhibited a narrow size distribution. The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release. The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells. Rapid binding of the micelles to hydroxyapatite (HA) microparticles indicated their high affinity for bone. P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model. In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity. In conclusion, our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
Collapse
Affiliation(s)
- HUAN GAO
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Department of Pharmacy, The General Hospital of Xinjiang Military Region, Urumqi, 830000, China
| | - JIE ZHANG
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - TONY G. KLEIJN
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
- Department of Pathology, Laboratory of Experimental Oncology, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - ZHAOYONG WU
- Department of Pharmacy, Jiaxing Maternal and Child Health Care Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - BING LIU
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
- Qinghai Enlu Biotechnology Co., Ltd., Haidong, 810700, China
| | - YUJIN MA
- Qinghai Enlu Biotechnology Co., Ltd., Haidong, 810700, China
| | - BAOYUE DING
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - DONGFENG YIN
- Department of Pharmacy, The General Hospital of Xinjiang Military Region, Urumqi, 830000, China
| |
Collapse
|
5
|
Carrelo H, Escoval AR, Vieira T, Jiménez-Rosado M, Silva JC, Romero A, Soares PIP, Borges JP. Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications. Gels 2023; 9:982. [PMID: 38131968 PMCID: PMC10742759 DOI: 10.3390/gels9120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is a disease that continues to greatly impact our society. Developing new and more personalized treatment options is crucial to decreasing the cancer burden. In this study, we combined magnetic polysaccharide microparticles with a Pluronic thermoresponsive hydrogel to develop a multifunctional, injectable drug delivery system (DDS) for magnetic hyperthermia applications. Gellan gum and alginate microparticles were loaded with superparamagnetic iron oxide nanoparticles (SPIONs) with and without coating. The magnetic microparticles' registered temperature increases up to 4 °C upon the application of an alternating magnetic field. These magnetic microparticles were mixed with drug-loaded microparticles, and, subsequently, this mixture was embedded within a Pluronic thermoresponsive hydrogel that is capable of being in the gel state at 37 °C. The proposed DDS was capable of slowly releasing methylene blue, used as a model drug, for up to 9 days. The developed hydrogel/microparticle system had a smaller rate of drug release compared with microparticles alone. This system proved to be a potential thermoresponsive DDS suitable for magnetic hyperthermia applications, thus enabling a synergistic treatment for cancer.
Collapse
Affiliation(s)
- Henrique Carrelo
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - André R. Escoval
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - Tânia Vieira
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | | | - Jorge Carvalho Silva
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alberto Romero
- Department of Chemical Engineering, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Paula Isabel P. Soares
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| | - João Paulo Borges
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal; (H.C.)
| |
Collapse
|
6
|
Cabral FV, Santana BDM, Lange CN, Batista BL, Seabra AB, Ribeiro MS. Pluronic F-127 Hydrogels Containing Copper Oxide Nanoparticles and a Nitric Oxide Donor to Treat Skin Cancer. Pharmaceutics 2023; 15:1971. [PMID: 37514157 PMCID: PMC10384138 DOI: 10.3390/pharmaceutics15071971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is a serious and aggressive type of skin cancer with growing incidence, and it is the leading cause of death among those affected by this disease. Although surgical resection has been employed as a first-line treatment for the early stages of the tumor, noninvasive topical treatments might represent an alternative option. However, they can be irritating to the skin and result in undesirable side effects. In this context, the potential of topical polymeric hydrogels has been investigated for biomedical applications to overcome current limitations. Due to their biocompatible properties, hydrogels have been considered ideal candidates to improve local therapy and promote wound repair. Moreover, drug combinations incorporated into the polymeric-based matrix have emerged as a promising approach to improve the efficacy of cancer therapy, making them suitable vehicles for drug delivery. In this work, we demonstrate the synthesis and characterization of Pluronic F-127 hydrogels (PL) containing the nitric oxide donor S-nitrosoglutathione (GSNO) and copper oxide nanoparticles (CuO NPs) against melanoma cells. Individually applied NO donor or metallic oxide nanoparticles have been widely explored against various types of cancer with encouraging results. This is the first report to assess the potential and possible underlying mechanisms of action of PL containing both NO donor and CuO NPs toward cancer cells. We found that PL + GSNO + CuO NPs significantly reduced cell viability and greatly increased the levels of reactive oxygen species. In addition, this novel platform had a huge impact on different organelles, thus triggering cell death by inducing nuclear changes, a loss of mitochondrial membrane potential, and lipid peroxidation. Thus, GSNO and CuO NPs incorporated into PL hydrogels might find important applications in the treatment of skin cancer.
Collapse
Affiliation(s)
- Fernanda V Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo 05508-000, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Camila N Lange
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Bruno L Batista
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo 05508-000, SP, Brazil
| |
Collapse
|
7
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
8
|
Humeniuk E, Adamczuk G, Kubik J, Adamczuk K, Józefczyk A, Korga-Plewko A. Cardioprotective Effect of Centaurea castriferrei Borbás & Waisb Extract against Doxorubicin-Induced Cardiotoxicity in H9c2 Cells. Molecules 2023; 28:420. [PMID: 36615632 PMCID: PMC9824364 DOI: 10.3390/molecules28010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin (DOX) is one of the most used chemotherapeutic agents in the treatment of various types of cancer. However, a continual problem that is associated with its application in therapeutic regimens is the development of dose-dependent cardiotoxicity. The progression of this process is associated with a range of different mechanisms, but especially with the high level of oxidative stress. The aim of the study was to evaluate the effects of the water and methanol-water extracts from the plant Centaurea castriferrei (CAS) obtained by the ultrasound-assisted extraction method on the DOX-induced cardiotoxicity in the rat embryonic cardiomyocyte cell line H9c2. The H9c2 cells were treated for 48 h with the DOX and water or methanol-water extracts, or a combination (DOX + CAS H2O/CAS MeOH). The MTT assay, cell cycle analysis, and apoptosis detection revealed that both the tested extracts significantly abolished the cytotoxic effect caused by DOX. Moreover, the detection of oxidative stress by the CellROX reagent, the evaluation of the number of AP sites, and the expressions of the genes related to the oxidative stress defense showed substantial reductions in the oxidative stress levels in the H9c2 cells treated with the combination of DOX and CAS H2O/CAS MeOH compared with the DOX administered alone. The tested extracts did not affect the cytotoxic effect of DOX on the MCF-7 breast cancer cell line. The obtained results constitute the basis for further research in the context of the application of C. castriferrei extracts as adjuvants in the therapy regiments of cancer patients treated with DOX.
Collapse
Affiliation(s)
- Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 20-090 Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-090 Lublin, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|