1
|
Andrews GP, Laverty T, Jones DS. Mucoadhesive Polymeric Polyologels Designed for the Treatment of Periodontal and Related Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:589. [PMID: 38475273 DOI: 10.3390/polym16050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The study objective was to design and characterise herein unreported polyologels composed of a range of diol and triol solvents and polyvinyl methyl ether-co-maleic acid (PVM/MA) and, determine their potential suitability for the treatment of periodontal and related diseases in the oral cavity using suitable in vitro methodologies. Polyologel flow and viscoelastic properties were controlled by the choice of solvent and the concentration of polymer. At equivalent polymer concentrations, polyologels prepared with glycerol (a triol) exhibited the greatest elasticity and resistance to deformation. Within the diol solvents (PEG 400, pentane 1,5-diol, propane 1,2-diol, propane 1,3-diol, and ethylene glycol), PEG 400 polyologels possessed the greatest elasticity and resistance to deformation, suggesting the importance of distance of separation between the diol groups. Using Raman spectroscopy bond formation between the polymer carbonyl group and the diol hydroxyl groups was observed. Polyologel mucoadhesion was influenced by viscoelasticity; maximum mucoadhesion was shown by glycerol polyologels at the highest polymer concentration (20% w/w). Similarly, the choice of solvent and concentration of PVM/MA affected the release of tetracycline from the polyologels. The controlled release of tetracycline for at least 10 h was observed for several polyologels, which, in combination with their excellent mucoadhesion and flow properties, offer possibilities for the clinical use of these systems to treat diseases within the oral cavity.
Collapse
Affiliation(s)
- Gavin P Andrews
- School of Pharmacy, Queen's University of Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Laverty
- School of Pharmacy, Queen's University of Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - David S Jones
- School of Pharmacy, Queen's University of Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
3
|
Wang X, Sun H, Mu T. Materials and structure of polysaccharide-based delivery carriers for oral insulin: A review. Carbohydr Polym 2024; 323:121364. [PMID: 37940264 DOI: 10.1016/j.carbpol.2023.121364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease that affects >500 million patients worldwide. Subcutaneous injection of insulin is the most effective treatment at present. However, regular needle injections will cause pain, inflammation, and other adverse consequences. In recent years, significant progress has been made in non-injectable insulin preparations. Oral administration is the best way of administration due to its simplicity, convenience, and good patient compliance. However, oral insulin delivery is hindered by many physiological barriers in the gastrointestinal tract, resulting in the low relative bioavailability of direct oral insulin delivery. To improve the relative bioavailability, a variety of insulin delivery vectors have been developed. Polysaccharides are used to achieve safe and effective insulin loading due to their excellent biocompatibility and protein affinity. The functional characteristics of polysaccharide-based delivery carriers, such as pH responsiveness, mucosal adhesion, and further functionalization modifications, enhance the gastrointestinal absorption and bioavailability of insulin. This paper reviews the materials and structures of oral insulin polysaccharide-based carriers, providing ideas for further improving the relative bioavailability of oral insulin.
Collapse
Affiliation(s)
- Xinran Wang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
4
|
Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials 2023; 302:122312. [PMID: 37690380 PMCID: PMC10840840 DOI: 10.1016/j.biomaterials.2023.122312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Biologics are unaffordable to a large majority of the global population because of prohibitively expensive fermentation systems, purification and the requirement for cold chain for storage and transportation. Limitations of current production and delivery systems of biologics were evident during the recent pandemic when <2.5% of vaccines produced were available to low-income countries and ∼19 million doses were discarded in Africa due to lack of cold-chain infrastructure. Among FDA-approved biologics since 2015, >90% are delivered using invasive methods. While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral drugs have been approved by FDA since 2015. A newly launched oral biologic costs only ∼3% of the average cost of injectable biologics because of the simplified regulatory approval process by elimination of prohibitively expensive fermentation, purification, cold storage/transportation. In addition, the cost of developing a new biologic injectable product (∼$2.5 billion) has been dramatically reduced through oral or topical delivery. Topical delivery has the unique advantage of targeted delivery of high concentration protein drugs, without getting diluted in circulating blood. However, only very few topical drugs have been approved by the FDA. Therefore, this review highlights recent advances in oral or topical delivery of proteins at early or advanced stages of human clinical trials using chewing gums, patches or sprays, or nucleic acid drugs directly, or in combination with, nanoparticles and offers future directions.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
5
|
Kida D, Konopka T, Jurczyszyn K, Karolewicz B. Technological Aspects and Evaluation Methods for Polymer Matrices as Dental Drug Carriers. Biomedicines 2023; 11:biomedicines11051274. [PMID: 37238944 DOI: 10.3390/biomedicines11051274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The development of polymer matrices as dental drug carriers takes into account the following technological aspects of the developed formulations: the composition and the technology used to manufacture them, which affect the properties of the carriers, as well as the testing methods for assessing their behavior at application sites. The first part of this paper characterizes the methods for fabricating dental drug carriers, i.e., the solvent-casting method (SCM), lyophilization method (LM), electrospinning (ES) and 3D printing (3DP), describing the selection of technological parameters and pointing out both the advantages of using the mentioned methods and their limitations. The second part of this paper describes testing methods to study the formulation properties, including their physical and chemical, pharmaceutical, biological and in vivo evaluation. Comprehensive in vitro evaluation of carrier properties permits optimization of formulation parameters to achieve prolonged retention time in the dynamic oral environment and is essential for explaining carrier behavior during clinical evaluation, consequently enabling the selection of the optimal formulation for oral application.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Tomasz Konopka
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Kamil Jurczyszyn
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|