1
|
Zhuo Y, Wang F, Lv Q, Fang C. Dissolving microneedles: Drug delivery and disease treatment. Colloids Surf B Biointerfaces 2025; 250:114571. [PMID: 39983455 DOI: 10.1016/j.colsurfb.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Traditional transdermal drug delivery methods are often plagued by technical inefficiencies, limited absorption, and the potential for adverse reactions. In contrast, dissolving microneedles (DMNs) offer a novel approach to transdermal drug delivery by effectively merging the benefits of subcutaneous injection with those of conventional transdermal methods. These microneedles dissolve completely within the body, releasing the encapsulated antigen without leaving any sharp remnants. Furthermore, DMNs overcome the limitations of traditional transdermal patches, which are restricted to delivering only small molecule drugs. By facilitating the efficient transdermal absorption of large molecules, DMNs enable precise and painless disease treatment. With advantages such as effective delivery, safety, controllable administration, DMNs hold significant promise in the fields of disease treatment and drug delivery. This article explores the substrate materials, preparation techniques, characterization methods, and current applications of DMNs. We also discuss the current challenges and obstacles faced by DMNs. Finally, we outline potential future research directions for DMNs, aiming to provide a theoretical reference for researchers involved in their preparation and application.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China
| | - Fangyue Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
2
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
3
|
Jian X, Deng Y, Xiao S, Qi F, Deng C. Microneedles in diabetic wound care: multifunctional solutions for enhanced healing. BURNS & TRAUMA 2025; 13:tkae076. [PMID: 39958434 PMCID: PMC11827613 DOI: 10.1093/burnst/tkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 11/09/2024] [Indexed: 02/18/2025]
Abstract
Diabetic wounds present a significant challenge in clinical treatment and are characterized by chronic inflammation, oxidative stress, impaired angiogenesis, peripheral neuropathy, and a heightened risk of infection during the healing process. By creating small channels in the surface of the skin, microneedle technology offers a minimally invasive and efficient approach for drug delivery and treatment. This article begins by outlining the biological foundation of normal skin wound healing and the unique pathophysiological mechanisms of diabetic wounds. It then delves into the various types, materials, and preparation processes of microneedles. The focus is on the application of multifunctional microneedles in diabetic wound treatment, highlighting their antibacterial, anti-inflammatory, immunomodulatory, antioxidant, angiogenic and neural repair properties. These multifunctional microneedles demonstrate synergistic therapeutic effects by directly influencing the wound microenvironment, ultimately accelerating the healing of diabetic wounds. The advancement of microneedle technology not only holds promise for enhancing the treatment outcomes of diabetic wounds but also offers new strategies for addressing other chronic wounds.
Collapse
Affiliation(s)
- Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
4
|
Liang H, Chen J, Qiu G, Guo B, Qiu Y. Ultrasonication-Induced Preparation of High-Mechanical-Strength Microneedles Using Stable Silk Fibroin. Polymers (Basel) 2024; 16:3183. [PMID: 39599274 PMCID: PMC11598507 DOI: 10.3390/polym16223183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Silk fibroin (SF) is an ideal material for microneedle (MN) preparation. However, long extraction and short storage durations limit its application. Furthermore, MNs prepared from SF alone are easy to break during skin insertion. In this study, a regenerated SF solution was autoclaved and freeze-dried to produce a stable and water-soluble SF sponge. The freeze-dried SF (FD-SF) solution was ultrasonically treated before being used in the fabrication of MNs. The ultrasonically modified SFMNs (US-SFMNs) were evaluated in comparison to FD-SFMNs made from FD-SF and conventional SFMNs made from regenerated SF. The results indicated that the FD-SF could be completely dissolved in water and remained stable even after 8 months of storage. FTIR and XRD analyses showed that SF in US-SFMNs had increased β-sheet content and crystallization compared to FD-SFMNs, by 7.3% and 8.1%, respectively. The US-SFMNs had higher mechanical strength than conventional SFMNs and FD-SFMNs, with a fracture force of 1.55 N per needle and a rat skin insertion depth of 370 μm. The US-SFMNs also demonstrated enhanced transdermal drug delivery and enzymatic degradation in vitro. In conclusion, the autoclaving and freeze drying of SF, as well as ultrasonication-induced MN preparation, provide promising SF-based microneedles for transdermal drug delivery.
Collapse
Affiliation(s)
- Huihui Liang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Guirong Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuqin Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.L.); (J.C.); (G.Q.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Trombino S, Sole R, Curcio F, Malivindi R, Caracciolo D, Mellace S, Montagner D, Cassano R. Microparticles Made with Silk Proteins for Melanoma Adjuvant Therapy. Gels 2024; 10:485. [PMID: 39195014 DOI: 10.3390/gels10080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, which is characterized by metastasis and poor prognosis due to the limited effectiveness of current therapies and the toxicity of conventional drugs. For this reason and in recent years, one of the most promising strategies in the treatment of this form of cancer is the use of drug delivery systems as carriers capable of conveying the therapeutic agent into the tumor microenvironment, thus preventing its degradation and improving its safety and effectiveness profiles. In the present work, microparticles based on silk fibroin and epifibroin 0039, silk-derived proteins loaded with idebenone, were created, which act as therapeutic carriers for topical use in the treatment of melanoma. The resulting particles have a spherical shape, good loading efficiency, and release capacity of idebenone. Efficacy studies have demonstrated a reduction in the proliferation of COLO-38, melanoma tumor cells, while safety tests have demonstrated that the microparticles are not cytotoxic and do not possess prosensitizing activity. Notably, transdermal release studies revealed that all particles released idebenone over more days. The analysis of the stimulatory markers of the proinflammatory process, CD54 and CD86, did not show any increase in expression, thus confirming the absence of potential prosesensitization effects of the silk fibroin-based particles. The research, therefore, found that idebenone-loaded silk protein microparticles could effectively reduce the proliferation of melanoma cells without cytotoxicity. This indicates the promise of a safe and effective treatment of melanoma.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Silvia Mellace
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
7
|
Duan W, Xu K, Huang S, Gao Y, Guo Y, Shen Q, Wei Q, Zheng W, Hu Q, Shen JW. Nanomaterials-incorporated polymeric microneedles for wound healing applications. Int J Pharm 2024; 659:124247. [PMID: 38782153 DOI: 10.1016/j.ijpharm.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, PR China
| | - Wei Zheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
8
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
9
|
Pollini M, Paladini F. The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems. Biomimetics (Basel) 2024; 9:295. [PMID: 38786505 PMCID: PMC11117513 DOI: 10.3390/biomimetics9050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
10
|
Che Ab Rahman A, Matteini P, Kim SH, Hwang B, Lim S. Development of stretchable microneedle arrays via single-step digital light-processing printing for delivery of rhodamine B into skin tissue. Int J Biol Macromol 2024; 262:129987. [PMID: 38342256 DOI: 10.1016/j.ijbiomac.2024.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
This paper introduces a novel approach for loading and releasing Rhodamine B (RhB) into the skin using minimally-invasive microneedle technology developed through digital light-processing (DLP) printing. Notably, this process involves the direct 3D fabrication of rigid microneedle arrays affixed to a flexible patch, marking a pioneering application of DLP printing in this context. The stretchable and durable design of the microneedle substrate enables it to adapt to dynamic movements associated with human activities. Moreover, the microneedle features a pore on each side of the pyramid needle, effectively optimizing its drug-loading capabilities. Results indicate that the microneedle patch can withstand up to 50 % strain without failure and successfully penetrates rat skin. In vitro drug release profiles, conducted through artificial and rat skin, were observed over a 70 h period. This study establishes the potential of a simple manufacturing process for the creation of pore-designed microneedle arrays with a stretchable substrate, showcasing their viability in transdermal drug delivery applications.
Collapse
Affiliation(s)
- Aqila Che Ab Rahman
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", Italian National Research Council, via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Byungil Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
11
|
Khorshidian A, Sharifi N, Choupani Kheirabadi F, Rezaei F, Sheikholeslami SA, Ariyannejad A, Esmaeili J, Basati H, Barati A. In Vitro Release of Glycyrrhiza Glabra Extract by a Gel-Based Microneedle Patch for Psoriasis Treatment. Gels 2024; 10:87. [PMID: 38391417 PMCID: PMC10887857 DOI: 10.3390/gels10020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/01/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Microneedle patches are attractive drug delivery systems that give hope for treating skin disorders. In this study, to first fabricate a chitosan-based low-cost microneedle patch (MNP) using a CO2 laser cutter for in vitro purposes was tried and then the delivery and impact of Glycyrrhiza glabra extract (GgE) on the cell population by this microneedle was evaluated. Microscopic analysis, swelling, penetration, degradation, biocompatibility, and drug delivery were carried out to assess the patch's performance. DAPI staining and acridine orange (AO) staining were performed to evaluate cell numbers. Based on the results, the MNs were conical and sharp enough (diameter: 400-500 μm, height: 700-900 μm). They showed notable swelling (2 folds) during 5 min and good degradability during 30 min, which can be considered a burst release. The MNP showed no cytotoxicity against fibroblast cell line L929. It also demonstrated good potential for GgE delivery. The results from AO and DAPI staining approved the reduction in the cell population after GgE delivery. To sum up, the fabricated MNP can be a useful recommendation for lab-scale studies. In addition, a GgE-loaded MNP can be a good remedy for skin disorders in which cell proliferation needs to be controlled.
Collapse
Affiliation(s)
- Ayeh Khorshidian
- Department of Biomedical Engineering, TISSUEHUB Co., Tehran 1956854977, Iran;
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
| | - Niloufar Sharifi
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450066, China
| | - Fatemeh Choupani Kheirabadi
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Tabriz 54911, Iran
| | - Farnoushsadat Rezaei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Seyed Alireza Sheikholeslami
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Ayda Ariyannejad
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Marine Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
- Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran 1956854977, Iran
| | - Hojat Basati
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran; (N.S.); (F.C.K.); (S.A.S.); (A.A.); (H.B.)
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran 3584014179, Iran
| | - Aboulfazl Barati
- Center for Materials and Manufacturing Sciences, Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| |
Collapse
|
12
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. Materials and Methods A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). Results The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. Conclusion The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Zhang S, Yu F, Chen J, Yan D, Gong D, Chen L, Chen J, Yao Q. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int J Biol Macromol 2023; 251:126209. [PMID: 37567522 DOI: 10.1016/j.ijbiomac.2023.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Conjunctival reconstruction using biocompatible polymers constitutes an effective treatment for conjunctival scarring and associated visual impairment. In this work, a thin film comprising silk peptide (SP), cellulose nanofibrils (CNF) and Ag nanoparticles (AgNPs) that implanted on the poly(lactic acid) (PLA) electrospun fibrous membranes (EFMs) was designed for biomedical reconstruction. SP and CNF as thin films can improve the surface hydrophilicity of the as-prepared scaffolds, which synergistically enhanced the biocompatibility. In in vivo experiments, the developed PLA EFMs modified with 3 wt% SP/CNF/AgNPs could be easily manipulated and transplanted onto conjunctival defects in rabbits, consequently accelerating the structural and functional restoration of the ocular surface in 12 days. Additionally, incorporation of 0.30 mg/g AgNPs efficiently reduced the topical application of antibiotics without causing infections. Thus, these resultant scaffolds could not only serve as useful alternatives for conjunctival engineering, but also prevent infections effectively with a very low content of AgNPs.
Collapse
Affiliation(s)
- Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
15
|
Liu H, Zhan J, Lin R, Yin Y, Ren L. Strong infiltrative HHC36 antimicrobial peptide/silver nanoparticles-loaded carboxymethyl chitosan/sodium alginate hydrogel for acne vulgaris therapy. NANOTECHNOLOGY 2023; 34:495101. [PMID: 37657423 DOI: 10.1088/1361-6528/acf5f5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
Acne is a common chronic skin inflammatory disease closely related toCutibacterium acnes(C. acnes), which affects the life quality of patients worldwide, especially adolescents and young adults. However, the physical barrier of the skin makes drugs difficult to infiltrate effectively into infected site, causing acne hard to cure and easy to recur. Herein, we developed an antibacterial skin dressing with strong infiltration of antibacterial agents which can co-delivery small-molecular antimicrobial agents through stratum corneum deeply into dermis, achieving high antimicrobial efficacy. The antibacterial dressings were constructed with carboxymethyl chitosan/sodium alginate (CMCS/SA) hydrogel loading with HHC36 (an antimicrobial peptide) and silver nanoparticles (AgNPs) conjugates (Ag-H2/CMCS/SA hydrogel). The released Ag-H2from Ag-H2/CMCS/SA hydrogel can early infiltrate into dermis, co-delivery HHC36 and AgNPs due to the infiltration and targeting of HHC36, presenting the superior antibacterial effect compared to HHC36 or AgNPs alone and killing 100%C. acnesand 100%Staphylococcus epidermidis(S. epidermidis) at a very low concentration of Ag-H2(15μg ml-1A g with 7.1μg ml-1HHC36). Meanwhile, Ag-H2/CMCS/SA hydrogel was biocompatible due to the natural polysaccharides carboxymethyl chitosan and sodium alginate. The HaCaT cells spread well in Ag-H2/CMCS/SA hydrogel. These results indicate that the co-delivery small-molecular antimicrobial agents is a promising strategy and Ag-H2/CMCS/SA hydrogel has a great potential in the therapy of acne.
Collapse
Affiliation(s)
- Hongju Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
- Sino-Singapore International Joint Research Institute, Guangzhou 510555, People's Republic of China
- Guangzhou Proud Seeing Biotechnology Co. Ltd, Guangzhou 510623, People's Republic of China
| | - Jiezhao Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ruibin Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Ying Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
| |
Collapse
|
16
|
He H, Wang Z, Aikelamu K, Bai J, Shen Q, Gao X, Wang M. Preparation and In Vitro Characterization of Microneedles Containing Inclusion Complexes Loaded with Progesterone. Pharmaceutics 2023; 15:1765. [PMID: 37376213 DOI: 10.3390/pharmaceutics15061765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE In order to improve patient compliance and the ease of use during progesterone application, and to increase the clinical application of progesterone, progesterone was made into a microneedle. METHODS Progesterone complexes were prepared using a single-factor and central composite design. In the preparation of the microneedles, the tip loading rate was used as an evaluation index. The selection of tip materials among the biocompatible materials of gelatin (GEL), hyaluronic acid (HA), and polyvinylpyrrolidone (PVP), and the use of polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) as backing layers, respectively, were carried out and the resulting microneedles were evaluated accordingly. RESULTS The progesterone inclusion complexes prepared at a molar ratio of 1:2.16 progesterone and hydroxypropyl-β-cyclodextrin (HP-β-CD), a temperature of 50 °C, and reaction time of 4 h had high encapsulation and drug-loading capacities of 93.49% and 9.55%, respectively. Gelatine was finally chosen as the material for the preparation of the micro-needle tip based on the drug loading rate of the tip. Two types of microneedles were prepared: one with 7.5% GEL as the tip and 50% PVA as the backing layer, and one with 15% GEL as the tip and 5% HPC as the backing layer. The microneedles of both prescriptions exhibited good mechanical strength and penetrated the skin of rats. The needle tip loading rates were 49.13% for the 7.5% GEL-50% PVA microneedles and 29.31% for the 15% GEL-5% HPC microneedles. In addition, in vitro release and transdermal experiments were performed using both types of microneedles. CONCLUSION The microneedles prepared in this study enhanced the in vitro transdermal amount of progesterone drug by releasing the drug from the microneedle tip into the subepidermis.
Collapse
Affiliation(s)
- Hongji He
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Zhaozhi Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Kadireya Aikelamu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jingya Bai
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Qi Shen
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Mei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
17
|
Yuan R, Yang N, Huang Y, Li W, Zeng Y, Liu Z, Tan X, Feng F, Zhang Q, Su S, Chu C, Liu L, Ge L. Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21929-21940. [PMID: 37126734 DOI: 10.1021/acsami.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force. Pyramidal LBL MN-rhEGF patches hold so enough mechanical strength to penetrate the stratum corneum, and generated microchannels allow rhEGF direct delivery in situ. The administrable delivery of biomacromolecular rhEGF through hierarchically coated MN arrays follows the diffusion mechanism of Fick's second law. Numerous efforts further have illustrated that finger-pressing LBL MN-rhEGF patches could not only promote cell proliferation of normal human dermal fibroblasts (NHDF) and human umbilical vein endothelial cells (HUVEC) in vitro but also take significant effects (regenerative epidermis: ∼144 μm; pro-angiogenesis: higher CD31 expression) in accelerating wound healing of mechanically injured rats, compared to the traditional dressing, which relies on passive diffusion. Our proof-of-concept features novel LBL biomacromolecular drug-delivery systems and self-administrated precision medicine modes at the point of care.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Ning Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, P.R. China
| | - Weikun Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Zonghao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xin Tan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Fang Feng
- Jiangsu Yuyue Medical Equipment & Supply Co., Ltd., Development Zone, Danyang 212310, P.R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, P.R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, P.R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|