1
|
Solanki K, Ahmed N, Srivastava N, Meher N. Prostate-Specific Membrane Antigen-Targeted NIR Phototheranostics for Prostate Cancer. ACS APPLIED BIO MATERIALS 2024; 7:5861-5884. [PMID: 39192748 DOI: 10.1021/acsabm.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The evolution of targeted cancer theranostics has revolutionized personalized medicine by integrating diagnostic and therapeutic capabilities. Prostate-specific membrane antigen (PSMA) has emerged as a key theranostic target in the context of prostate cancer, paving the way for the clinical approval of multiple drugs. However, the persistent challenge of off-target toxicity, which plagues both conventional and advanced treatment modalities such as targeted chemotherapy and radiotherapy, thus demands further innovation. Considering this critical issue, this review discusses the recent advances in the binary treatment techniques, i.e., phototherapies, that have the potential to circumvent the key concern of off-target toxicity associated with personalized chemotherapy and radiotherapy. Precisely, an up-to-date overview of the latest developments in the near-infrared (NIR)-based phototheranostic strategies for prostate cancer by targeting PSMA has been presented. Furthermore, we have discussed the associated particulars that require specific attention in enhancing the translational potential of phototheranostic techniques.
Collapse
Affiliation(s)
- Krishna Solanki
- National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Nazeer Ahmed
- National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Nidhi Srivastava
- National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Niranjan Meher
- National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Wang T, Li M, Wei R, Wang X, Lin Z, Chen J, Wu X. Small Molecule-Drug Conjugates Emerge as a New Promising Approach for Cancer Treatment. Mol Pharm 2024; 21:1038-1055. [PMID: 38344996 DOI: 10.1021/acs.molpharmaceut.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antibody drug conjugates (ADCs) have emerged as a new promising class of anti- cancer agents. However, limitations such as higher costs and unavoidable immunogenicity due to their relatively large structures cannot be ignored. Therefore, the development of lightweight drugs such as small molecule-drug conjugates (SMDCs) based on the ADC design idea has become a new option for targeted therapy. SMDCs are derived from the coupling of small-molecule targeting ligands with cytotoxic drugs. They are composed of three parts: small-molecule targeting ligands, cytotoxic molecules, and linkers. Compared with ADCs, SMDCs can be more rapidly and evenly dispersed into tumor tissues, with low cost and no immunogenicity. In this article, we will give a comprehensive review of different types of SMDCs currently under clinical trials to provide ideas and inspirations for the development of clinically applicable SMDCs.
Collapse
Affiliation(s)
- Tiansi Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Meichai Li
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xinyu Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai 201799, China
- Shandong University of Traditional Chinese Medicine, No.4655, University Road, Jinan, Shandong 250355, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| |
Collapse
|
3
|
Das S, Dey S, Patra S, Bera A, Ghosh T, Prasad B, Sayala KD, Maji K, Bedi A, Debnath S. BODIPY-Based Molecules for Biomedical Applications. Biomolecules 2023; 13:1723. [PMID: 38136594 PMCID: PMC10741882 DOI: 10.3390/biom13121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives have attracted attention as probes in applications like imaging and sensing due to their unique properties like (1) strong absorption and emission in the visible and near-infrared regions of the electromagnetic spectrum, (2) strong fluorescence and (3) supreme photostability. They have also been employed in areas like photodynamic therapy. Over the last decade, BODIPY-based molecules have even emerged as candidates for cancer treatments. Cancer remains a significant health issue world-wide, necessitating a continuing search for novel therapeutic options. BODIPY is a flexible fluorophore with distinct photophysical characteristics and is a fascinating drug development platform. This review provides a comprehensive overview of the most recent breakthroughs in BODIPY-based small molecules for cancer or disease detection and therapy, including their functional potential.
Collapse
Affiliation(s)
- Sarasija Das
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| | - Sudipto Dey
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India;
| | - Sanujit Patra
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Arindam Bera
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Bibin Prasad
- Solenic Medical, Inc., 4275 Kellway Circle, Suite 146, Addison, TX 75001, USA;
| | - Kapil Dev Sayala
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75206, USA;
| | - Krishnendu Maji
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India; (S.P.); (A.B.); (T.G.)
| | - Anjan Bedi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
5
|
Zamora I, Freeman MR, Encío IJ, Rotinen M. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2023; 24:13673. [PMID: 37761978 PMCID: PMC10531052 DOI: 10.3390/ijms241813673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Collapse
Affiliation(s)
- Irene Zamora
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Dondi F, Antonelli A, Suardi N, Guerini AE, Albano D, Lucchini S, Camoni L, Treglia G, Bertagna F. PET/CT and Conventional Imaging for the Assessment of Neuroendocrine Prostate Cancer: A Systematic Review. Cancers (Basel) 2023; 15:4404. [PMID: 37686680 PMCID: PMC10486674 DOI: 10.3390/cancers15174404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a rare neoplasm, and the role of both conventional imaging (CI) and positron emission tomography/computed tomography (PET/CT) for its assessment has not been clearly evaluated and demonstrated. The aim of this systematic review was to analyze the diagnostic performances of these imaging modalities in this setting. METHODS A wide literature search of the PubMed/MEDLINE, Scopus, and Web of Science databases was made to find relevant published articles about the role of CI and PET/CT for the evaluation of NEPC. RESULTS 13 studies were included in the systematic review. PET/CT imaging with different radiopharmaceuticals has been evaluated in many studies (10) compared to CI (3 studies), which has only a limited role in NEPC. Focusing on PET/CT, a study used [18F]FDG, labeled somatostatin analogs were used in 5 cases, a study used [68Ga]Ga-FAPI-04, [68Ga]Ga-PSMA-11 was evaluated in a single case, and two works used different tracers. CONCLUSION Published data on the role of PET/CT for the assessment of NEPC are limited. At present, it is still uncertain which tracer performs best, and although [18F]FDG has been evaluated and seems to offer some advantages in availability and clinical staging, other tracers may be more useful to understand tumor biology or identify targets for subsequent radioligand therapy. Further research is therefore desirable. In contrast, data are still limited to draw a final conclusion on the role and the specific characteristics of CI in this rare form of neoplasm, and therefore, more studies are needed in this setting.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | | | - Nazareno Suardi
- Department of Urology, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Andrea Emanuele Guerini
- Department of Radiation Oncology, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Domenico Albano
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Lucchini
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luca Camoni
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Treglia
- Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Francesco Bertagna
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Kawakibi T, Bala N, Liu LP, Searcy LA, Denslow ND, Alli AA. Decreased MARCKS Protein Expression in Kidney Cortex Membrane Fractions of Cathepsin B Knockout Mice Is Associated with Reduced Lysophosphatidylcholine and Protein Kinase C Activity. Biomedicines 2023; 11:1489. [PMID: 37239160 PMCID: PMC10216610 DOI: 10.3390/biomedicines11051489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Cathpesin B is a multi-functional protease that plays numerous roles in physiology and pathophysiology. We hypothesized that actin cytoskeleton proteins that are substrates of cathepsin B, various lipids, and kinases that are regulated by lipids would be down-regulated in the kidney of cathepsin B knockout mice. Here, we show by Western blot and densitometric analysis that the expression and proteolysis of the actin cytoskeleton proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and spectrin are significantly reduced in kidney cortex membrane fractions of cathepsin B knockout mice compared to C57B6 wild-type control mice. Lipidomic results show that specific lipids are increased while other lipids, including lysophosphatidylcholine (LPC) species LPC (16:0), LPC (18:0), LPC (18:1), and LPC (18:2), are significantly decreased in membrane fractions of the kidney cortex from Cathepsin B null mice. Protein Kinase C (PKC) activity is significantly lower in the kidney cortex of cathepsin B knockout mice compared to wild-type mice, while calcium/calmodulin-dependent protein kinase II (CaMKII) activity and phospholipase D (PLD) activity are comparable between the two groups. Together, these results provide the first evidence of altered actin cytoskeleton organization, membrane lipid composition, and PKC activity in the kidneys of mice lacking cathepsin B.
Collapse
Affiliation(s)
- Tamim Kawakibi
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Louis A. Searcy
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|