1
|
Huang Y, Li Y, He R, Dong S, Zhao Z, Jiao X. Cancer immunogenic cell death via pyroptosis with CXCR4-targeted nanotoxins in hepatocellular carcinoma. Front Bioeng Biotechnol 2024; 12:1433126. [PMID: 39559553 PMCID: PMC11570815 DOI: 10.3389/fbioe.2024.1433126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Cytotoxic agents have shown limited benefits in hepatocellular carcinoma (HCC), mediated in part by the lack of targeting. As cell-penetrating peptides (CPPs) are capable of delivering various biologically active molecules into cells, including protein, peptides, small chemo-drugs, and nucleic acid with or without targeting, we developed T22-PE24, a CXCR4-targeted self-assembling cytotoxic nanotoxin, to effectively induce HCC pyroptosis. Methods T22 incorporating enhanced green fluorescent protein (EGFP) or PE24 was purified from DE3 bacterial cells and characterized using transmission electron microscopy, the Zetasizer Nano®, and SEC-HPLC. The internalization effect of T22-EGFP was detected by flow cytometry system (FCS) in CXCR4+/LM3(CXCR4-) HCC cells. The CCK8, lactate dehydrogenase (LDH) release, Western blot, and nude mice HCC models were used to estimate the cell viability of T22-PE24. The complete-immunity HCC tumor-bearing mice model was used to assess the immune response of T22-PE24. Results The round shape under transmission electron microscopy, 49.4 nm hydrodynamic diameter, and -33.33 mV zeta potential indicated that T22-PE24 self-assembled into nanoparticles. T22 incorporating EGFP selectively internalized in CXCR4+ HCC cells and showed no accumulation in CXCR4-knockout HCC cells. The T22-PE24 nanotoxin induced HCC pyroptosis via the caspase-3/GSDME signaling pathway and suppressed tumor growth in the absence of histological alterations in normal organs. Using the complete-immunity HCC tumor-bearing mice model, we found that T22-PE24 nanotoxin effectively induces the global reprogramming of cell components of the immune tumor microenvironment, leading to enhanced antitumor effects compared to those observed in immunodeficient mice. Conclusion Our findings demonstrate the activation of the innate immune response in HCC by inducing pyroptosis with T22-PE24 nanotoxin treatment and support an implementation of this strategy for HCC treatment.
Collapse
Affiliation(s)
- Yingbin Huang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yihu Li
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuyi Dong
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xingyuan Jiao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. CXCR4 as a therapeutic target in acute myeloid leukemia. Leukemia 2024; 38:2303-2317. [PMID: 39261603 DOI: 10.1038/s41375-024-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Extensive research on the CXCL12-CXCR4 axis in acute myeloid leukemia (AML) has resulted in the incorporation of novel anti-leukemia drugs targeting this axis into therapeutic strategies. However, despite this progress, a comprehensive and up-to-date review addressing the role of the CXCL12-CXCR4 axis in AML's oncogenic processes is lacking. In this review, we examine its molecular aspects influencing cancer progression, such as its impact on autonomous proliferation, apoptotic regulation, chemoresistance mechanisms, and interactions with non-leukemic cells such as MSCs and Treg cells. Additionally, we explore clinical implications, including prognosis, correlation with WBC count, blast count in the bone marrow and peripheral blood, as well as its association with FLT3-ITD, NPM1 mutations, and FAB classification. Finally, this paper extensively discusses drugs that specifically target the CXCL12-CXCR4 axis, including plerixafor/AMD3100, ulocuplumab, peptide E5, and motixafortide, shedding light on their potential therapeutic value in the treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Nucleophosmin
- Molecular Targeted Therapy
- Chemokine CXCL12/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Drug Resistance, Neoplasm
- Mutation
- Animals
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
3
|
Bosch-Camós L, Martínez-Torró C, López-Laguna H, Lascorz J, Argilaguet J, Villaverde A, Rodríguez F, Vázquez E. Nanoparticle-Based Secretory Granules Induce a Specific and Long-Lasting Immune Response through Prolonged Antigen Release. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:435. [PMID: 38470766 DOI: 10.3390/nano14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Developing prolonged antigen delivery systems that mimic long-term exposure to pathogens appears as a promising but still poorly explored approach to reach durable immunities. In this study, we have used a simple technology by which His-tagged proteins can be assembled, assisted by divalent cations, as supramolecular complexes with progressive complexity, namely protein-only nanoparticles and microparticles. Microparticles produced out of nanoparticles are biomimetics of secretory granules from the mammalian hormonal system. Upon subcutaneous administration, they slowly disintegrate, acting as an endocrine-like secretory system and rendering the building block nanoparticles progressively bioavailable. The performance of such materials, previously validated for drug delivery in oncology, has been tested here regarding the potential for time-prolonged antigen release. This has been completed by taking, as a building block, a nanostructured version of p30, a main structural immunogen from the African swine fever virus (ASFV). By challenging the system in both mice and pigs, we have observed unusually potent pro-inflammatory activity in porcine macrophages, and long-lasting humoral and cellular responses in vivo, which might overcome the need for an adjuvant. The robustness of both innate and adaptive responses tag, for the first time, these dynamic depot materials as a novel and valuable instrument with transversal applicability in immune stimulation and vaccinology.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Argilaguet
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodríguez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Wang Y, Bin T, Tang J, Xu XJ, Lin C, Lu B, Sun TT. Construction of an acute myeloid leukemia prognostic model based on m6A-related efferocytosis-related genes. Front Immunol 2023; 14:1268090. [PMID: 38077322 PMCID: PMC10704160 DOI: 10.3389/fimmu.2023.1268090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Background One of the most prevalent hematological system cancers is acute myeloid leukemia (AML). Efferocytosis-related genes (ERGs) and N6-methyladenosine (m6A) have an important significance in the progression of cancer, and the metastasis of tumors. Methods The AML-related data were collected from The Cancer Genome Atlas (TCGA; TCGA-AML) database and Gene Expression Omnibus (GEO; GSE9476, GSE71014, and GSE13159) database. The "limma" R package and Venn diagram were adopted to identify differentially expressed ERGs (DE-ERGs). The m6A related-DE-ERGs were obtained by Spearman analysis. Subsequently, univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) were used to construct an m6A related-ERGs risk signature for AML patients. The possibility of immunotherapy for AML was explored. The pRRophetic package was adopted to calculate the IC50 of drugs for the treatment of AML. Finally, the expression of characterized genes was validated by quantitative reverse transcription-PCR (qRT-PCR). Results Based on m6A related-DE-ERGs, a prognostic model with four characteristic genes (UCP2, DOCK1, SLC14A1, and SLC25A1) was constructed. The risk score of model was significantly associated with the immune microenvironment of AML, with four immune cell types, 14 immune checkpoints, 20 HLA family genes and, immunophenoscore (IPS) all showing differences between the high- and low-risk groups. A total of 56 drugs were predicted to differ between the two groups, of which Erlotinib, Dasatinib, BI.2536, and bortezomib have been reported to be associated with AML treatment. The qRT-PCR results showed that the expression trends of DOCK1, SLC14A1 and SLC25A1 were consistent with the bioinformatics analysis. Conclusion In summary, 4 m6A related- ERGs were identified and the corresponding prognostic model was constructed for AML patients. This prognostic model effectively stratified the risk of AML patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ting Bin
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jing Tang
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Jun Xu
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chao Lin
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bo Lu
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Tian Sun
- Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
5
|
Voltà-Durán E, Alba-Castellón L, Serna N, Casanova I, López-Laguna H, Gallardo A, Sánchez-Chardi A, Villaverde A, Unzueta U, Vázquez E, Mangues R. High-precision targeting and destruction of cancer-associated PDGFR-β + stromal fibroblasts through self-assembling, protein-only nanoparticles. Acta Biomater 2023; 170:543-555. [PMID: 37683965 DOI: 10.1016/j.actbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor β (PDGFR-β)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-β-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-β/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. STATEMENT OF SIGNIFICANCE: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-β/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| |
Collapse
|
6
|
Álamo P, Parladé E, Favaro MTP, Gallardo A, Mendoza R, Ferreira LC, Roher N, Mangues R, Villaverde A, Vázquez E. Probing the Biosafety of Implantable Artificial Secretory Granules for the Sustained Release of Bioactive Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39167-39175. [PMID: 37614001 PMCID: PMC10450642 DOI: 10.1021/acsami.3c08643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Among bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs.
Collapse
Affiliation(s)
- Patricia Álamo
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
| | - Eloi Parladé
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marianna T. P. Favaro
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto
de Ciências Biomédicas, Universidade
de São Paulo, São
Paulo 05508-000, Brazil
| | - Alberto Gallardo
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Department
of Pathology, Hospital de la Santa Creu
i Sant Pau, 08025 Barcelona, Spain
| | - Rosa Mendoza
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Luís C.
S. Ferreira
- Instituto
de Ciências Biomédicas, Universidade
de São Paulo, São
Paulo 05508-000, Brazil
| | - Nerea Roher
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department
of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ramón Mangues
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Martínez-Torró C, Alba-Castellón L, Carrasco-Díaz LM, Serna N, Imedio L, Gallardo A, Casanova I, Unzueta U, Vázquez E, Mangues R, Villaverde A. Lymphocyte infiltration and antitumoral effect promoted by cytotoxic inflammatory proteins formulated as self-assembling, protein-only nanoparticles. Biomed Pharmacother 2023; 164:114976. [PMID: 37276641 DOI: 10.1016/j.biopha.2023.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Two human proteins involved in the inflammatory cell death, namely Gasdermin D (GSDMD) and the Mixed Lineage Kinase Domain-Like (MLKL) protein have been engineered to accommodate an efficient ligand of the tumoral cell marker CXCR4, and a set of additional peptide agents that allow their spontaneous self-assembling. Upon production in bacterial cells and further purification, both proteins organized as stable nanoparticles of 46 and 54 nm respectively, that show, in this form, a moderate but dose-dependent cytotoxicity in cell culture. In vivo, and when administered in mouse models of colorectal cancer through repeated doses, the nanoscale forms of tumor-targeted GSDMD and, at a lesser extent, of MLKL promoted CD8+ and CD20+ lymphocyte infiltration in the tumor and an important reduction of tumor size, in absence of systemic toxicity. The potential of these novel pharmacological agents as anticancer drugs is discussed in the context of synergistic approaches to more effective cancer treatments.
Collapse
Affiliation(s)
- Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Luis Miguel Carrasco-Díaz
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Imedio
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isolda Casanova
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|