1
|
Taslimi Eshkalak M, Mazloumi Jourkouyeh E, Faezi Ghasemi M, Zamani H, Zahmatkesh H, Rasti B. ZnO-Rutin nanostructure as a potent antibiofilm agent against Pseudomonasaeruginosa. Microb Pathog 2025; 198:107156. [PMID: 39608510 DOI: 10.1016/j.micpath.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Pseudomonas aeruginosa is a common human pathogen that is resistant to multiple antibiotics due to its ability to form biofilms. Developing novel nanoformulations capable of inhibiting and removing biofilms offers a promising solution for controlling biofilm-related infections. In this study, we investigated the anti-biofilm activity of rutin-conjugated ZnO nanoparticles (ZnO-Rutin NPs) in pathogenic strains of P. aeruginosa. The synthesized ZnO-Rutin NPs had amorphous shapes with sizes ranging from 14 to 100 nm. The broth microdilution assay revealed that ZnO-Rutin NPs, with an MIC value of 2 mg/mL, exhibit greater antimicrobial activity than ZnO NPs and rutin alone. Based on crystal violet staining, the biofilm inhibition rate by ½ MIC of the conjugated nanoparticles was recorded at above 90 %. The significant reduction in exopolysaccharide (62.75-66.37 %) and alginate (38.3-57.61 %) levels, as well as the formation of thin biofilms in the ZnO-Rutin NP-treated group, confirmed the anti-biofilm potential of these nanoparticles. Additionally, a significant decrease in the metabolic activity and viable cells of mature biofilms was observed after exposure to the conjugated nanoparticles. Furthermore, ZnO-Rutin NPs considerably attenuated the expression of the Las-Rhl quorum-sensing transcriptional regulator genes (lasR and rhlR) in P. aeruginosa by 0.39-0.40 and 0.25-0.42 folds, respectively. This work demonstrated that ZnO-Rutin NPs are remarkably capable of inhibiting the initial stage of biofilm formation and eradicating mature biofilms, suggesting they could be a useful agent for treating P. aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Mahya Taslimi Eshkalak
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Edris Mazloumi Jourkouyeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | | - Hossein Zahmatkesh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
2
|
Wang Z, An Z, Richel A, Huang M, Gou X, Xu D, Zhang M, Mo H, Hu L, Zhou X. Ferrous sulfate remodels the properties of sodium alginate-based hydrogel and facilitates the healing of wound infection caused by MRSA. Carbohydr Polym 2024; 346:122554. [PMID: 39245535 DOI: 10.1016/j.carbpol.2024.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Frequent occurrence of wound infection caused by multiple-resistant bacteria (MRB) has posed a serious challenge to the current healthcare system relying on antibiotics. The development of novel antimicrobial materials with high safety and efficacy to heal wound infection is of great importance in combating this crisis. Herein, we prepared a promising antibacterial hydrogel by cross-linking ferrous ions (Fe2+) with the deprotonated carboxyl anion in sodium alginate (Na-ALG) to cure wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Interestingly, ferrous-modified Na-ALG (Fe-ALG) hydrogel demonstrated better properties compared to the traditional Na-ALG-based hydrogels, including injectability, self-healing, appropriate fluidity, high-water retention, potent MRSA-killing efficacy, and excellent biocompatibility. Importantly, the addition of Fe2+ enhances the antibacterial efficacy of the Na-ALG hydrogel, enabling it to effectively eliminate MRSA and accelerate the healing of antibiotic-resistant bacterial-infected wounds in a remarkably short period (10 days). This modification not only facilitates wound closure and fur generation, but also mitigates systemic inflammation, thereby effectively impeding the spread of MRSA to the lungs. Taken together, Fe-ALG hydrogel is a promising therapeutic material for treating wound infections by Staphylococcus aureus, especially by antibiotic-resistant strains like MRSA.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China; Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Zinuo An
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Minmin Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dan Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Rusu A, Oancea OL, Tanase C, Uncu L. Unlocking the Potential of Pyrrole: Recent Advances in New Pyrrole-Containing Compounds with Antibacterial Potential. Int J Mol Sci 2024; 25:12873. [PMID: 39684580 DOI: 10.3390/ijms252312873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Nitrogen heterocycles are valuable structural elements in the molecules of antibacterial drugs approved and used to treat bacterial infections. Pyrrole is a five-atom heterocycle found in many natural compounds with biological activity, including antibacterial activity. Numerous compounds are being develop based on the pyrrole heterocycle as new potential antibacterial drugs. Due to the phenomenon of antibacterial resistance, there is a continuous need to create new effective antibacterials. In the scientific literature, we have identified the most relevant studies that aim to develop new compounds, such as pyrrole derivatives, that are proven to have antibacterial activity. Nature is an endless reservoir of inspiration for designing new compounds based on the structure of pyrrole heterocycles such as calcimycin, lynamycins, marinopyrroles, nargenicines, phallusialides, and others. However, many other synthetic compounds based on the pyrrole heterocycle have been developed and can be optimized in the future. The identified compounds were classified according to the type of chemical structure. The chemical structure-activity relationships, mechanisms of action, and antibacterial effectiveness of the most valuable compounds were highlighted. This review highlights scientific progress in designing new pyrrole-containing compounds and provides examples of lead compounds that can be successfully optimized further.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Livia Uncu
- Scientific Center for Drug Research, Pharmaceutical and Toxicological Chemistry Department, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165 Bd. Stefan Cel Mare si Sfant, MD-2004 Chisinau, Moldova
| |
Collapse
|
4
|
Yuqing F, Zhang S, Peng R, Silva J, Ernst O, Lapizco-Encinas BH, Liu R, Du K. Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39585791 DOI: 10.1021/acs.langmuir.4c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Numerous studies have been trying to create nanomaterial-based antimicrobial surfaces to prevent infections due to bacterial growth. One major challenge in real-world applications of these surfaces is their mechanical durability. In this study, we introduce durable antimicrobial microstructure surface (DAMS), which integrates DLP 3D-printed microstructures with zinc oxide (ZnO) nanoflowers. The microstructures function as protection armor for the nanoflowers during abrasion. The antimicrobial ability was evaluated by immersing in 2E8 CFU/mL Escherichia coli (E. coli) suspension and then evaluated using electron microscopy. Our results indicated that DAMS reduced bacterial coverage by more than 90% after 12 h of incubation and approximately 50% after 48 h of incubation before abrasion. More importantly, bacterial coverage was reduced by approximately 50% after 2 min of abrasion with a tribometer, and DAMS remains effective even after 6 min of abrasion. These findings highlight the potential of DAMS as an affordable, scalable, and durable antimicrobial surface for various biomedical applications.
Collapse
Affiliation(s)
- Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California, Riverside, California 92521, United States
| | - Shuhuan Zhang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Justin Silva
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Olivia Ernst
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Rui Liu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Kasapgil E, Garay-Sarmiento M, Rodriguez-Emmenegger C. Advanced Antibacterial Strategies for Combatting Biomaterial-Associated Infections: A Comprehensive Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2018. [PMID: 39654369 DOI: 10.1002/wnan.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs. We explore antimicrobial-eluting biomaterials, contact-killing surfaces, and antifouling coatings, emphasizing the application of antifouling polymer brushes on medical devices. Recent advancements in multifunctional antimicrobial biomaterials, which integrate multiple mechanisms for superior protection against BAIs, are also discussed. By evaluating the advantages and limitations of these strategies, this review aims to guide the design and development of highly efficient and biocompatible antimicrobial biomaterials. We highlight potential design routes that facilitate the transition from laboratory research to clinical applications. Additionally, we provide insights into the potential of synthetic biology as a novel approach to combat antimicrobial resistance. This review aspires to inspire future research and innovation, ultimately improving patient outcomes and advancing medical device technology.
Collapse
Affiliation(s)
- Esra Kasapgil
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Bakircay University, Izmir, Turkey
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuela Garay-Sarmiento
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Department of Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Chemical and Biological Engineering, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - César Rodriguez-Emmenegger
- Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Hu XL, Gan HQ, Gui WZ, Yan KC, Sessler JL, Yi D, Tian H, He XP. Superresolution imaging of antibiotic-induced structural disruption of bacteria enabled by photochromic glycomicelles. Proc Natl Acad Sci U S A 2024; 121:e2408716121. [PMID: 39226360 PMCID: PMC11406247 DOI: 10.1073/pnas.2408716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Zhen Gui
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224
| | - Dong Yi
- Research Center for Systems Biosynthesis, China State Institute of Pharmaceutical Industry, National Key Laboratory of Lead Druggability Research, Shanghai 201203, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
7
|
Udabe J, Bongiovanni Abel S, Orellano MS, Calderón M. Multiresponsive Nanogels for the Selective Delivery of Antimicrobial Drugs to Mucosal Tissues. Biomacromolecules 2024; 25:5968-5978. [PMID: 39190052 DOI: 10.1021/acs.biomac.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Effective drug delivery to bacterially infected mucosa remains a challenge due to the combined obstacles of the mucosal barrier, pH variations, and high concentrations of glutathione. However, polysaccharide-based responsive nanogels (NGs) can take advantage of these conditions to deliver specific antimicrobials. We explored the critical features of pH- and redox-responsive NGs to increase drug penetration, residence time, and efficacy in the infected mucosa. We prepared multifunctional NGs using hydroxypropyl cellulose as a template for the cross-linking of methacrylic acid with N,N'-bis(acryloyl)cystamine (BAC) or N,N'-methylenebis(acrylamide) (BIS). Studies of NG-mucin binding and the antibacterial efficacy of doxycycline-loaded NGs revealed the interplay between the response to pH and redox clues. Specifically, higher BAC composition increased mucus binding and controlled release in reductive conditions, while higher BIS composition yielded NGs with higher doxycycline-mediated antibacterial efficacy against Staphylococcus aureus. The findings reveal the potential of multiresponsive NGs in effective antimicrobial delivery in infected mucosa.
Collapse
Affiliation(s)
- Jakes Udabe
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Silvestre Bongiovanni Abel
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP)-National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - María Soledad Orellano
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
8
|
Esnaashari F, Zahmatkesh H. Antivirulence activities of Rutin-loaded chitosan nanoparticles against pathogenic Staphylococcus aureus. BMC Microbiol 2024; 24:328. [PMID: 39244527 PMCID: PMC11380343 DOI: 10.1186/s12866-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is an infectious bacterium that is frequently found in healthcare settings and the community. This study aimed to prepare rutin-loaded chitosan nanoparticles (Rut-CS NPs) and assess their antibacterial activity against pathogenic strains of S. aureus. RESULTS The synthesized Rut-CS NPs exhibited an amorphous morphology with a size ranging from 160 to 240 nm and a zeta potential of 37.3 mV. Rut-CS NPs demonstrated significant antibacterial activity against S. aureus strains. Following exposure to Rut-CS NPs, the production of staphyloxanthin pigment decreased by 43.31-89.63%, leading to increased susceptibility of S. aureus to hydrogen peroxide. Additionally, visual inspection of cell morphology indicated changes in membrane integrity and permeability upon Rut-CS NPs exposure, leading to a substantial increase (107.07-191.08%) in cytoplasmic DNA leakage in the strains. Furthermore, ½ MIC of Rut-CS NPs effectively inhibited the biofilm formation (22.5-37.5%) and hemolytic activity (69-82.59%) in the S. aureus strains. CONCLUSIONS Our study showcases that Rut-CS NPs can serve as a novel treatment agent to combat S. aureus infections by altering cell morphology and inhibiting virulence factors of S. aureus.
Collapse
Affiliation(s)
- Fatemeh Esnaashari
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
9
|
Yuqing F, Zhang S, Peng R, Silva J, Ernst O, Lapizco-Encinas BH, Liu R, Du K. Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598554. [PMID: 38915492 PMCID: PMC11195153 DOI: 10.1101/2024.06.11.598554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A. Numerous studies have been trying to create nanomaterials based antimicrobial surfaces to combat the growing bacterial infection problems. Mechanical durability has become one of the major challenges to applying those surfaces in real life. In this study, we demonstrate the Durable Antimicrobial Microstructures Surface (DAMS) consisting of DLP 3D printed microstructures and zinc oxide (ZnO) nanoflowers. The microstructures serve as a protection armor for the nanoflowers during abrasion. The antimicrobial ability was tested by immersing in 2E8 CFU/mL Escherichia coli ( E. coli ) suspension and then evaluated using electron microscopy. Compared to the bare control, our results show that the DAMS reduces bacterial coverage by more than 90% after 12 hrs of incubation and approximately 50% after 48 hrs of incubation before abrasion. Importantly, bacterial coverage is reduced by approximately 50% after 2 min of abrasion with a tribometer, and DAMS remains effective even after 6 min of abrasion. These findings highlight the potential of DAMS as an affordable, scalable, and durable antimicrobial surface for various biomedical applications.
Collapse
|
10
|
Priyadharshini A, Ganesh I, Rangarajalu K, Samuel MS, Ravikumar S. Engineering Whole-Cell Biosensors for Enhanced Detection of Environmental Antibiotics Using a Synthetic Biology Approach. Indian J Microbiol 2024; 64:402-408. [PMID: 39010990 PMCID: PMC11246489 DOI: 10.1007/s12088-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial Two component systems have evolved with many intricate sensory apparatuses for external stimuli like light, temperature, oxygen, pH and chemical compounds. Recent studies have shown the potential of two-component regulatory systems (TCSs) of bacteria in creating synthetic regulatory circuits for several applications. Antimicrobial resistance is increasing globally in both developing and developed countries and it is one of the foremost global threats to public health. The resistance level to a broad spectrum of antibiotics is rising every year by 5-10%. In this context, TCSs controlling microbial physiology at the transcriptional level could be an appropriate candidate for monitoring the antibiotics present in the environment. This review provided a wide opportunity to gain knowledge about the TCSs available in diverse species to sense the antibiotics. Further, this review explored the EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) based biosensors to repurpose the sensing modules from the microbial TCSs using the synthetic biology approach.
Collapse
Affiliation(s)
- Arunagiri Priyadharshini
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Irisappan Ganesh
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | | | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| |
Collapse
|
11
|
Al Meslamani AZ. Is the world crippled by antimicrobial resistance, or simply lacking information? Expert Rev Anti Infect Ther 2024; 22:365-368. [PMID: 38381552 DOI: 10.1080/14787210.2024.2322429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
13
|
Lungulescu EM, Fierascu RC, Stan MS, Fierascu I, Radoi EA, Banciu CA, Gabor RA, Fistos T, Marutescu L, Popa M, Voinea IC, Voicu SN, Nicula NO. Gamma Radiation-Mediated Synthesis of Antimicrobial Polyurethane Foam/Silver Nanoparticles. Polymers (Basel) 2024; 16:1369. [PMID: 38794562 PMCID: PMC11125184 DOI: 10.3390/polym16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Nosocomial infections represent a major threat within healthcare systems worldwide, underscoring the critical need for materials with antimicrobial properties. This study presents the development of polyurethane foam embedded with silver nanoparticles (PUF/AgNPs) using a rapid, eco-friendly, in situ radiochemical synthesis method. The nanocomposites were characterized by UV-vis and FTIR spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray technique (SEM/EDX), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and compression strengths, antimicrobial activity, and foam toxicity tests. The resulting PUF/AgNPs demonstrated prolonged stability (over 12 months) and good dispersion of AgNPs. Also, the samples presented higher levels of hardness compared to samples without AgNPs (deformation of 1682 µm for V1 vs. 4307 µm for V0, under a 5 N force), tensile and compression strength of 1.80 MPa and 0.34 Mpa, respectively. Importantly, they exhibited potent antimicrobial activity against a broad range of bacteria (including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis) and a fungal mixture (no fungal growth on the sample surface was observed after 28 days of exposure). Furthermore, these materials were non-toxic to human keratinocytes, which kept their specific morphology after 24 h of incubation, highlighting their potential for safe use in biomedical applications. We envision promising applications for PUF/AgNPs in hospital bed mattresses and antimicrobial mats, offering a practical strategy to reduce nosocomial infections and enhance patient safety within healthcare facilities.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Elena Andreea Radoi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Cristina Antonela Banciu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Raluca Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Sorina N. Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| |
Collapse
|
14
|
Li H, Yang L, Feng W, Liu W, Wang M, Liu F, Li G, Wang X. Poly(amino acid)-based drug delivery nanoparticles eliminate Methicillin resistant Staphylococcus aureus via tunable release of antibiotic. Colloids Surf B Biointerfaces 2024; 239:113882. [PMID: 38593511 DOI: 10.1016/j.colsurfb.2024.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.
Collapse
Affiliation(s)
- Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Longlong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weilin Liu
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, PR China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
15
|
Bai HJ, Geng QF, Jin F, Yang YL. Epidemiologic analysis of antimicrobial resistance in hospital departments in China from 2022 to 2023. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:39. [PMID: 38449053 PMCID: PMC10918933 DOI: 10.1186/s41043-024-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Bacterial drug resistance monitoring in hospitals is a crucial aspect of healthcare management and a growing concern worldwide. In this study, we analysed the bacterial drug resistance surveillance in our hospital from 2022 Q1 to 2023 Q2. The main sampling sources were respiratory, blood, and urine-based, and the main clinical infections were respiratory and genitourinary in nature. Specimens were inoculated and cultured; bacterial strains were isolated using a VITEK® 2 Compact 60-card automatic microorganism identifier (bioMerieux, Paris, France) and their matching identification cards were identified, and manual tests were supplemented for strain identification. The most common Gram-positive bacteria detected were Staphylococcus aureus, followed by Enterococcus faecalis (E. faecalis), Staphylococcus epidermidis (S. epidermidis), and Staphylococcus haemolyticus (S. haemolyticus). The most common Gram-negative bacteria detected were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most prevalent multidrug-resistant bacteria were those producing extended-spectrum beta-lactamases, followed by methicillin-resistant Staphylococcus aureus, followed by carbapenem-resistant Enterobacterales. This study suggests that the prevention and control of infections in the respiratory and genitourinary systems should be the focus of anti-infective work and that the use of antimicrobials should be reduced and regulated to prevent the emergence and spread of resistant bacteria.
Collapse
Affiliation(s)
- Hui-Jun Bai
- Department of Clinical Pharmacy, The Seventh People's Hospital of Hebei Province, 389 Jungong Road, Xicheng District, Dingzhou, 073000, China
| | - Qing-Feng Geng
- Department of Hospital Office, The Seventh People's Hospital of Hebei Province, 389 Jungong Road, Xicheng District, Dingzhou, 073000, China
| | - Fang Jin
- Department of Clinical Laboratory, The Seventh People's Hospital of Hebei Province, 389 Jungong Road, Xicheng District, Dingzhou, 073000, China
| | - Yong-Li Yang
- Department of Hospital Office, The Seventh People's Hospital of Hebei Province, 389 Jungong Road, Xicheng District, Dingzhou, 073000, China.
| |
Collapse
|
16
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
17
|
da Silva EF, Bastos LM, Fonseca BB, Ribas RM, Sommerfeld S, Pires HM, dos Santos FAL, Ribeiro LNDM. Lipid nanoparticles based on natural matrices with activity against multidrug resistant bacterial species. Front Cell Infect Microbiol 2024; 13:1328519. [PMID: 38264725 PMCID: PMC10803469 DOI: 10.3389/fcimb.2023.1328519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Lately, the bacterial multidrug resistance has been a reason to public health concerning around world. The development of new pharmacology therapies against infections caused by multidrug-resistant bacteria is urgent. In this work, we developed 10 NLC formulations composed of essential oils (EO), vegetable butter and surfactant. The formulations were evaluated for long-term and thermal cycling stability studies in terms of (particle size, polydispersion index and Zeta potential). In vitro antimicrobial assays were performed using disk diffusion test and by the determination of the minimum inhibitory concentration (MIC) performed with fresh and a year-old NLC. The most promising system and its excipients were structurally characterized through experimental methodologies (FTIR-ATR, DSC and FE-SEM). Finally, this same formulation was studied through nanotoxicity assays on the chicken embryo model, analyzing different parameters, as viability and weight changes of embryos and annexes. All the developed formulations presented long-term physicochemical and thermal stability. The formulation based on cinnamon EO presented in vitro activity against strains of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from humans and in vivo biocompatibility. Considering these promising results, such system is able to be further tested on in vivo efficacy assays.
Collapse
Affiliation(s)
| | | | - Belchiolina Beatriz Fonseca
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | |
Collapse
|
18
|
Jia X, Li J, Zheng Y, Yang X, Che T, Zhang J, Zhang Y, Zhang X, Wu Z. Dynamic Microenvironment-Adaptable Hydrogel with Photothermal Performance and ROS Scavenging for Management of Diabetic Ulcer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49974-49987. [PMID: 37870548 DOI: 10.1021/acsami.3c09182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Persistent bacterial infections and excessive oxidative stress prevent the healing of diabetic ulcers, leading to an increased disability rate. Current treatments fail to kill bacteria while simultaneously relieving oxidative stress. Herein, a dynamic microenvironment-adaptable hydrogel (BP@CAu) with photothermal performance and reactive oxygen species scavenging is presented for diabetic ulcer healing. This hydrogel prepared using a dynamic borate-ester could respond to acidity in the infection microenvironment for a controllable drug release. An excellent photothermal conversion effect was integrated in the hydrogel, which exhibited strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The hydrogel attenuated intracellular oxidative stress and inflammation and promoted cell migration. In a full-thickness skin defect model of diabetic rats, the BP@CAu hydrogel contributed to the fastest wound closure, with ideal reepithelialization, granulation tissue formation, and regeneration of blood vessels. Further mechanistic studies revealed that the hydrogel relieved oxidative stress and downregulated the expression of inflammatory cytokines, resulting in dramatic therapeutic effects on diabetic wounds. Therefore, this study provides a synergistic therapeutic strategy for efficient photothermal performance and reactive oxygen species scavenging in diabetic ulcers.
Collapse
Affiliation(s)
- Xinxin Jia
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| |
Collapse
|
19
|
Zhao Y, Li C, Zhang S, Cheng J, Liu Y, Han X, Wang Y, Wang Y. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? Front Microbiol 2023; 14:1277552. [PMID: 37849924 PMCID: PMC10577426 DOI: 10.3389/fmicb.2023.1277552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Nitric oxide (NO), as an important gaseous medium, plays a pivotal role in the human body, such as maintaining vascular homeostasis, regulating immune-inflammatory responses, inhibiting platelet aggregation, and inhibiting leukocyte adhesion. In recent years, the rapid prevalence of coronavirus disease 2019 (COVID-19) has greatly affected the daily lives and physical and mental health of people all over the world, and the therapeutic efficacy and resuscitation strategies for critically ill patients need to be further improved and perfected. Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator, and some studies have demonstrated its potential therapeutic use for COVID-19, severe respiratory distress syndrome, pulmonary infections, and pulmonary hypertension. In this article, we describe the biochemistry and basic characteristics of NO and discuss whether iNO can act as a "savior" for COVID-19 and related respiratory and cardiovascular disorders to exert a potent clinical protective effect.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yinghui Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|