1
|
Garcia MT, Namba AM, do Carmo PHF, Pedroso LLC, de Lima PMN, Gonçale JC, Junqueira JC. Antimicrobial effects of surface pre-reacted glass-ionomer (S-PRG) eluate against oral microcosm biofilm. BIOFOULING 2024; 40:390-401. [PMID: 38945827 DOI: 10.1080/08927014.2024.2371817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms in vitro. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and mutans streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Andressa Mayumi Namba
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Lara Luise Castro Pedroso
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Patrícia Michele Nagai de Lima
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Caparroz Gonçale
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| | - Juliana Campos Junqueira
- Departamento de Biociências e Diagnóstico Bucal, Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campos, São José dos Campos, Brazil
| |
Collapse
|
2
|
Fang L, Zhang Y, Cheng L, Zheng H, Wang Y, Qin L, Cai Y, Cheng L, Zhou W, Liu F, Wang S. Silica nanoparticles containing nano-silver and chlorhexidine to suppress Porphyromonas gingivalis biofilm and modulate multispecies biofilms toward healthy tendency. J Oral Microbiol 2024; 16:2361403. [PMID: 38847000 PMCID: PMC11155433 DOI: 10.1080/20002297.2024.2361403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm. Methods Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis). Results nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h. Conclusions nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.
Collapse
Affiliation(s)
- Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yishuang Zhang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Long Cheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lu Qin
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingchun Cai
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Wen Zhou
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, Fuzhou, China
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Kornsombut N, Takenaka S, Sotozono M, Nagata R, Ida T, Manuschai J, Saito R, Takahashi R, Noiri Y. Antibiofilm Properties and Demineralization Suppression in Early Enamel Lesions Using Dental Coating Materials. Antibiotics (Basel) 2024; 13:106. [PMID: 38275335 PMCID: PMC10812522 DOI: 10.3390/antibiotics13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This study aimed to investigate the effects of dental coating materials on Streptococcus mutans biofilm formation. The test materials were PRG Barrier Coat (PRG), BioCoat Ca (BioC), and FluorDental Jelly (FluorJ). Bovine enamel specimens were demineralized to mimic early enamel lesions. The biofilm was developed on a specimen treated with one of the materials by using a modified Robbins device flow-cell system. Scanning electron and fluorescence confocal laser scanning microscopy, viable and total cell counts, and gene expression assessments of the antibiofilm were performed. Ion incorporation was analyzed using a wavelength-dispersive X-ray spectroscopy electron probe microanalyzer. All materials allowed biofilm formation but reduced its volume. FluorJ was the only material that inhibited biofilm accumulation and had a bactericidal effect, revealing 0.66 log CFU in viable cells and 1.23 log copy reduction in total cells compared with the untreated group after 24 h of incubation. The ions released from PRG varied depending on the element. BioC contributed to enamel remineralization by supplying calcium ions while blocking the acid produced from the biofilm. In summary, the dental coating materials physically prevented acid attacks from the biofilm while providing ions to the enamel to improve its mechanical properties.
Collapse
Affiliation(s)
- Niraya Kornsombut
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Shoji Takenaka
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Maki Sotozono
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Ryoko Nagata
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Takako Ida
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Jutharat Manuschai
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Rui Saito
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Ryouhei Takahashi
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| | - Yuichiro Noiri
- Department of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (N.K.); (Y.N.)
| |
Collapse
|