1
|
Heida R, Jacob Silva PH, Akkerman R, Moser J, de Vries-Idema J, Bornet A, Pawar S, Stellacci F, Frijlink HW, Huckriede ALW, Hinrichs WLJ. Inhibition of influenza virus infection in mice by pulmonary administration of a spray dried antiviral drug. Eur J Pharm Biopharm 2024; 204:114507. [PMID: 39303952 DOI: 10.1016/j.ejpb.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Increasing resistance to antiviral drugs approved for the treatment of influenza urges the development of novel compounds. Ideally, this should be complemented by a careful consideration of the administration route. 6'siallyllactosamine-functionalized β-cyclodextrin (CD-6'SLN) is a novel entry inhibitor that acts as a mimic of the primary attachment receptor of influenza, sialic acid. In this study, we aimed to develop a dry powder formulation of CD-6'SLN to assess its in vivo antiviral activity after administration via the pulmonary route. By means of spray drying the compound together with trileucine, a dispersion enhancer, we created a powder that retained the antiviral effect of the drug, remained stable under elevated temperature conditions and performed well in a dry powder inhaler. To test the efficacy of the dry powder drug against influenza infection in vivo, infected mice were treated with CD-6'SLN using an aerosol generator that allowed for the controlled administration of powder formulations to the lungs of mice. CD-6'SLN was effective in mitigating the course of the disease compared to the control groups, reflected by lower disease activity scores and by the prevention of virus-induced IL-6 production. Our data show that CD-6'SLN can be formulated as a stable dry powder that is suitable for use in a dry powder inhaler and is effective when administered via the pulmonary route to influenza-infected mice.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Paulo H Jacob Silva
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Renate Akkerman
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Aurélien Bornet
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Sujeet Pawar
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 Switzerland
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
3
|
Zhang Q, Kou S, Cui Y, Dong J, Ye Y, Wang Y, Lu R, Li X, Nie Y, Shi K, Chen F, Hall P, Chen X, Wang Z, Jiang X. Ternary Dry Powder Agglomerate Inhalation Formulation of Melatonin With Air Jet Mixing to Improve In Vitro And In Vivo Performance. J Pharm Sci 2024; 113:434-444. [PMID: 37995838 DOI: 10.1016/j.xphs.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
An improved agglomerate formulation with melatonin and fine lactose for dry powder inhalation using Turbuhaler® was developed. Co-grinding lactose with 1 % magnesium stearate prior to air jet mixing served as a key factor to improve the in vitro aerosolization and in vivo efficacy. Elevated mixing pressure facilitated the dispersion and homogenization of the cohesive mixture for even distribution of agglomerate size after spheroidization and subsequent higher emitted dose with lower variation. Magnesium stearate was employed as a tertiary component to adjust the interparticle force for better aerosolization. At optimized mixing pressure, co-grinding lactose with magnesium stearate before jet mixing displayed further improvement of fine particle fraction to 71.6 ± 3.1 %. The superior fine particle deposition efficiency contributed to rapid onset of action and a high bioavailability of 67.0 % after intratracheal administration to rats. Overall, an inhalable melatonin dry powder formulation exhibiting good aerosol property and lung deposition with clinical translation potential was developed.
Collapse
Affiliation(s)
- Qingzhen Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China
| | - Shanglong Kou
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Yingtong Cui
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, Suzhou, Jiangsu, 215000, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Yuanyuan Wang
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Rui Lu
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Xinduo Li
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Yi Nie
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, Suzhou, Jiangsu, 215000, China
| | - Fang Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Xiaoling Chen
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China.
| | - Xingtao Jiang
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China.
| |
Collapse
|