1
|
Udabe J, Bongiovanni Abel S, Orellano MS, Calderón M. Multiresponsive Nanogels for the Selective Delivery of Antimicrobial Drugs to Mucosal Tissues. Biomacromolecules 2024; 25:5968-5978. [PMID: 39190052 DOI: 10.1021/acs.biomac.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Effective drug delivery to bacterially infected mucosa remains a challenge due to the combined obstacles of the mucosal barrier, pH variations, and high concentrations of glutathione. However, polysaccharide-based responsive nanogels (NGs) can take advantage of these conditions to deliver specific antimicrobials. We explored the critical features of pH- and redox-responsive NGs to increase drug penetration, residence time, and efficacy in the infected mucosa. We prepared multifunctional NGs using hydroxypropyl cellulose as a template for the cross-linking of methacrylic acid with N,N'-bis(acryloyl)cystamine (BAC) or N,N'-methylenebis(acrylamide) (BIS). Studies of NG-mucin binding and the antibacterial efficacy of doxycycline-loaded NGs revealed the interplay between the response to pH and redox clues. Specifically, higher BAC composition increased mucus binding and controlled release in reductive conditions, while higher BIS composition yielded NGs with higher doxycycline-mediated antibacterial efficacy against Staphylococcus aureus. The findings reveal the potential of multiresponsive NGs in effective antimicrobial delivery in infected mucosa.
Collapse
Affiliation(s)
- Jakes Udabe
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Silvestre Bongiovanni Abel
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP)-National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - María Soledad Orellano
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
2
|
Jo YH, Cho JH, Park DH, Yoon HI, Han SH, Yilmaz B. Antimicrobial activity, surface properties, and cytotoxicity of microencapsulated phytochemicals incorporated into three-dimensionally printable dental polymers. J Dent 2024; 141:104820. [PMID: 38128820 DOI: 10.1016/j.jdent.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the antimicrobial properties of three dimensionally-printed dental polymers (3DPs) incorporated with microencapsulated phytochemicals (MPs) and to assess their surface characteristics and cytotoxicity. METHODS MPs derived from phytoncide oil and their specific chemical components were introduced into suspensions of three microbial species: Streptococcus gordonii, Streptococcus oralis, and Candida albicans. Optical density was measured to determine the microbial growth in the presence of MPs for testing their antimicrobial activity. MPs at 5% (w/w) were mixed with dental polymers and dispersants to 3DP discs. These microbial species were then seeded onto the discs and incubated for 24 h. The antibacterial and antifungal activities of MP-containing 3DPs were evaluated by counting the colony-forming units (n = 3). The biofilm formation on the 3DP was assessed by crystal violet staining assay (n = 3). Microbial viability was determined using a live-dead staining and CLSM observation (n = 3). Surface roughness and water contact angle were assessed (n = 10). Cytotoxicity of MP-containing 3DPs for human gingival fibroblast was evaluated by MTT assay. RESULTS MPs, particularly (-)-α-pinene, suppressed the growth of all tested microbial species. MP-containing 3DPs significantly reduced the colony count (P ≤ 0.001) and biofilm formation (P ≤ 0.009), of all tested microbial species. Both surface roughness (P < 0.001) and water contact angle (P < 0.001) increased. The cytotoxicity remained unchanged after incorporating MPs to the 3DPs (P = 0.310). CONCLUSIONS MPs effectively controlled the microbial growth on 3DPs as evidenced by the colony count, biofilm formation, and cell viability. Although MPs modified the surface characteristics, they did not influence the cytotoxicity of 3DPs. CLINICAL SIGNIFICANCE Integration of MPs into 3DPs could produce dental prostheses or appliances with antimicrobial properties. This approach not only provides a proactive solution to reduce the risk of oral biofilm-related infection but also ensures the safety and biocompatibility of the material, thereby improving dental care.
Collapse
Affiliation(s)
- Ye-Hyeon Jo
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jun-Ho Cho
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyung-In Yoon
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Tata P, Ganesan R, Ray Dutta J. Amplifying bactericidal activity: Surfactant-mediated AgBr thin film coating over two-dimensional vertically aligned ZnO nanorods for dark-light dual mode disinfection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112815. [PMID: 37995494 DOI: 10.1016/j.jphotobiol.2023.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Thin film coatings with potent antibacterial properties find critical applications in diverse domains such as medical devices, frequently touched surfaces, and food packaging for combating microbial proliferation across diverse scenarios. Two-dimensional photocatalytic antimicrobial coatings, offering a substantial actual-to-apparent surface ratio, hold immense potential for achieving this objective. However, realizing antibacterial performance not just under light but also in dark conditions remains a challenge. To address this, we present AgBr-coated vertically aligned ZnO nanorods (NRs) thin film architecture, employing a unique surfactant-mediated solution-phase spin-coating approach for achieving uniform deposition of AgBr onto ZnO NRs. The resulting ZnO NRs/AgBr heterojunction architectures have been characterized for their microstructural, morphological, elemental, optical, and wettability attributes. The studies have ascertained the tunability of AgBr content by modulating the concentration of its surfactant-based precursor solution. Further, valence band (VB) analyses revealed an increase in the electron density near to the VB edge. The dual role of AgBr as an antimicrobial agent and a photosensitizer, effectively enhancing the visible-light photodisinfection efficacy of ZnO NRs, has been evident through the dark-light dual mode antibacterial studies. Electron paramagnetic resonance measurements have shown hydroxyl radicals being majorly responsible for the visible-light photodisinfection performance. Encouragingly, reusability assessments showcase significant promise, while artificial sweat-wiping studies on the structures unveil heightened photodisinfection efficacy. This enhancement could be attributed to components like urea and lactic acid, speculated to augment the photocatalytic efficiency by minimizing charge recombination.
Collapse
Affiliation(s)
- Pranathi Tata
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|
4
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
5
|
Demir D, Bolgen N, Vaseashta A. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers (Basel) 2023; 15:4253. [PMID: 37959933 PMCID: PMC10648854 DOI: 10.3390/polym15214253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The process of electrospinning is over a century old, yet novel material and method achievements, and later the addition of nanomaterials in polymeric solutions, have spurred a significant increase in research innovations with several unique applications. Significant improvements have been achieved in the development of electrospun nanofibrous matrices, which include tailoring compositions of polymers with active agents, surface functionalization with nanoparticles, and encapsulation of functional materials within the nanofibers. Recently, sequentially combining fabrication of nanofibers with 3D printing was reported by our group and the synergistic process offers fiber membrane functionalities having the mechanical strength offered by 3D printed scaffolds. Recent developments in electrospun nanofibers are enumerated here with special emphasis on biomedical technologies, chemical and biological sensing, and energy harvesting aspects in the context of e-textile and tactile sensing. Energy harvesting offers significant advantages in many applications, such as biomedical technologies and critical infrastructure protection by using the concept of finite state machines and edge computing. Many other uses of devices using electrospun nanofibers, either as standalone or conjoined with 3D printed materials, are envisaged. The focus of this review is to highlight selected novel applications in biomedical technologies, chem.-bio sensing, and broadly in energy harvesting for use in internet of things (IoT) devices. The article concludes with a brief projection of the future direction of electrospun nanofibers, limitations, and how synergetic combination of the two processes will open pathways for future discoveries.
Collapse
Affiliation(s)
- Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Türkiye;
| | - Nimet Bolgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Türkiye;
| | - Ashok Vaseashta
- Applied Research, International Clean Water Institute, Manassas, VA 20110, USA
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, LV 1048 Riga, Latvia
| |
Collapse
|
6
|
Zhang J, Tang W, Zhang X, Song Z, Tong T. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics 2023; 15:2113. [PMID: 37631327 PMCID: PMC10458108 DOI: 10.3390/pharmaceutics15082113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistant bacteria and infectious diseases associated with biofilms pose a significant global health threat. The integration and advancement of nanotechnology in antibacterial research offer a promising avenue to combat bacterial resistance. Nanomaterials possess numerous advantages, such as customizable designs, adjustable shapes and sizes, and the ability to synergistically utilize multiple active components, allowing for precise targeting based on specific microenvironmental variations. They serve as a promising alternative to antibiotics with diverse medical applications. Here, we discuss the formation of bacterial resistance and antibacterial strategies, and focuses on utilizing the distinctive physicochemical properties of nanomaterials to achieve inherent antibacterial effects by investigating the mechanisms of bacterial resistance. Additionally, we discuss the advancements in developing intelligent nanoscale antibacterial agents that exhibit responsiveness to both endogenous and exogenous responsive stimuli. These nanomaterials hold potential for enhanced antibacterial efficacy by utilizing stimuli such as pH, temperature, light, or ultrasound. Finally, we provide a comprehensive outlook on the existing challenges and future clinical prospects, offering valuable insights for the development of safer and more effective antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jinqiao Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Wantao Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xinyi Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| |
Collapse
|