1
|
Spacho N, Casertano M, Imperatore C, Papadopoulos C, Menna M, Eleftheriadis N. Investigating the Catalytic Site of Human 15-Lipoxygenase-1 via Marine Natural Products. Chemistry 2024; 30:e202402279. [PMID: 39041705 DOI: 10.1002/chem.202402279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.
Collapse
Affiliation(s)
- Ntaniela Spacho
- Department of Chemistry, University of Crete, 70013, Voutes, Heraklion, Greece
| | - Marcello Casertano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | |
Collapse
|
2
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
3
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
4
|
Casertano M, Esposito E, Bello I, Indolfi C, Putra MY, Di Cesare Mannelli L, Ghelardini C, Menna M, Sorrentino R, Cirino G, d’Emmanuele di Villa Bianca R, Imperatore C, Panza E, Mitidieri E. Searching for Novel Sources of Hydrogen Sulfide Donors: Chemical Profiling of Polycarpa aurata Extract and Evaluation of the Anti-Inflammatory Effects. Mar Drugs 2023; 21:641. [PMID: 38132963 PMCID: PMC10744941 DOI: 10.3390/md21120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals' cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Concetta Imperatore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| |
Collapse
|