1
|
Abdallah MH, Shawky S, Shahien MM, El-Horany HES, Ahmed EH, El-Housiny S. Development and Evaluation of Nano-Vesicular Emulsion-Based Gel as a Promising Approach for Dermal Atorvastatin Delivery Against Inflammation. Int J Nanomedicine 2024; 19:11415-11432. [PMID: 39530108 PMCID: PMC11552413 DOI: 10.2147/ijn.s477001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects. Methods ATV-loaded transethosomes (ATV-TEs) were optimized using the 33 Box-Behnken design. The ATV-TEs that were created were evaluated for their vesicle size, encapsulation efficiency (% EE), and percent release of drug. The optimum formulation was integrated into a hydroxypropyl methylcellulose (HPMC) emulsion-based gel (ATV-TEs emulgel) using jojoba oil. ATV-TEs emulgel was examined for its physical characteristics, ex vivo permeability, histological, and anti-inflammatory effect in a rat model of inflamed paw edema. Results The optimized transethosomes exhibited a vesicle size of 158.00 nm and an encapsulation efficiency of 80.14 ± 1.42%. Furthermore, the use of transethosomal vesicles effectively prolonged the release of ATV for a duration of 24 hours, in contrast to the pure drug suspension. In addition, the transethosomal emulgel loaded with ATV exhibited a 3.8-fold increase in the transdermal flow of ATV, in comparison to the pure drug suspension. ATV-TEs emulgel demonstrated a strong anti-inflammatory impact in the carrageenan-induced paw edema model. Discussion This was evident from the significant reduction in paw edema, which was equivalent to the effect of the standard anti-inflammatory medicine, Diclofenac sodium. Conclusion In summary, transethosomes, as a whole, might potentially serve as an effective method for delivering drugs via the skin. This could improve the ability of ATV to reduce inflammation by increasing its absorption through the skin.
Collapse
Affiliation(s)
- Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Seham Shawky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa El-Housiny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 4410240, Egypt
| |
Collapse
|
2
|
Farzan M, Abedi B, Bhia I, Madanipour A, Farzan M, Bhia M, Aghaei A, Kheirollahi I, Motallebi M, Amini-Khoei H, Ertas YN. Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders. ACS Chem Neurosci 2024; 15:2966-2981. [PMID: 39082749 DOI: 10.1021/acschemneuro.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Atossa Madanipour
- Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Mohammad Bhia
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Iman Kheirollahi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan
| |
Collapse
|
3
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Malang SD, Shambhavi, Sahu AN. Transethosomal gel for enhancing transdermal delivery of natural therapeutics. Nanomedicine (Lond) 2024; 19:1801-1819. [PMID: 39056148 PMCID: PMC11421302 DOI: 10.1080/17435889.2024.2375193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Transethosomes, a fusion of transferosomes and ethosomes, combine the advantageous attributes of both vesicular systems to enhance deformability and skin permeation. While skin delivery is effective for drug transport, overcoming the skin barrier remains a significant challenge, particularly for plant-based products with poor permeability. Transethosomes offer a promising solution, but their low viscosity and retention on skin surfaces led to the development of transethosomal gels. These gels can entrap unstable and high molecular weight herbal extracts, fractions and bioactive compounds, facilitating enhanced drug delivery to the inner layers of the skin. This review focuses on the superior performance of transethosomes compared with conventional lipid-based nanovesicular systems, offering an advanced approach for transdermal delivery of plant-based drugs with improved permeability and stability.
Collapse
Affiliation(s)
- Soki Daeme Malang
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Shambhavi
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, Zauli G, Valacchi G. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life (Basel) 2024; 14:155. [PMID: 38276284 PMCID: PMC10817472 DOI: 10.3390/life14010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Rebecca Voltan
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| |
Collapse
|