1
|
Wood-Yang AJ, Sankaranarayanan A, Freidlin MJ, Prausnitz MR. Highly Water-Soluble Microneedle Patch for Short Wear Time and Rapid Drug Delivery. Mol Pharm 2025; 22:573-582. [PMID: 39625155 PMCID: PMC11707735 DOI: 10.1021/acs.molpharmaceut.4c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Treatment of acute medical conditions such as pain would benefit from rapid drug delivery and improved ease of administration of local anesthetics that currently have a slow onset of action by topical or oral administration and require expert administration by injection. To address this need, microneedle (MN) patches containing needlelike projections made from a polymer/drug matrix can be painlessly pressed into the skin for local or systemic drug delivery. To improve the speed and ease of drug delivery, we present a rapidly dissolving, highly water-soluble MN patch, which minimizes the wear time to 10 s to improve drug delivery in situations where rapid delivery with simplified administration is needed. MNs were made of polyvinylpyrrolidone (PVP), which is soluble in both water (enabling dissolution in the skin) and polar organic solvents (facilitating coformulation with lidocaine (L)). The addition of a highly water-soluble salt, sodium bicarbonate (NaB), to PVP/L MNs allowed for 60% faster MN dissolution in porcine skin ex vivo. Further addition of citric acid to generate effervescence upon reaction with NaB did not further decrease the MN dissolution time in the pig skin and led to poor shelf-life stability due to premature effervescence during storage. The PVP/L/NaB MNs delivered 23.8 ± 3.5 μg lidocaine to the skin ex vivo, well above the expected dose for local analgesic effect. Our highly water-soluble PVP/L/NaB MN design enables shorter wear time for faster delivery compared to the oral or topical route and easier administration compared to injection currently used for the delivery of drugs needing a rapid onset of action.
Collapse
Affiliation(s)
- Amy J. Wood-Yang
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Abishek Sankaranarayanan
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Max J. Freidlin
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Salimi A, Hoseinzadeh H, Mohammad Soleymani S. Development and optimization of a methimazole microemulsion for topical application: Formulation characteristics and transdermal permeation. J Cosmet Dermatol 2024; 23:4315-4324. [PMID: 39135289 PMCID: PMC11626322 DOI: 10.1111/jocd.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Methimazole, an oral antithyroid drug, has recently gained attention for its skin-brightening effects when applied topically to treat melasma. This study aims to develop, optimize, and characterize a methimazole microemulsion as a novel, safe approach for local melasma treatment. MATERIALS AND METHODS We prepared microemulsion formulations containing 3% methimazole by combining appropriate amounts of surfactants (Tween 80 and Span 20), propylene glycol cosurfactant, and an oil phase (oleic acid-transcutol p at a 1:10 ratio). We then assessed droplet size, stability, viscosity, and skin permeation using rat skin models. RESULTS The microemulsions' droplet sizes ranged from 7.06 to 28.13 nm, with viscosities between 120 and 254 centipoises. Our analysis identified droplet size, viscosity, and membrane release as significant independent variables. We determined the permeability parameters of the optimal formulation through rat skin, including steady-state permeability rate (Jss), permeability coefficient (p), lag time (Tlag), and apparent diffusion coefficient (Dapp). CONCLUSION We found that the microemulsions' characteristics, physicochemical properties, and in vitro release depended on the surfactant-to-cosurfactant ratio, water content, and oil content. We developed an optimal formulation with a high surfactant-to-cosurfactant ratio and low water and oil percentages. This formulation shows potential for commercialization and manufacturing of final products.
Collapse
Affiliation(s)
- Anayatollah Salimi
- Department of Pharmaceutics, Faculty of PharmacyAhvaz Jundishapur University of Medical SciencesAhvazIran
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hadis Hoseinzadeh
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Saeed Mohammad Soleymani
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
- Clinical Research Development Centre, Imam Hossein Educational HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Shi C, Chen M, Li X, Fu Y, Yang D, Wen T, Zhao W, Sun Y, Wang W, Lu C, Wu Q, Wu C, Pan X, Quan G. ATP-adenosine axis regulation combined with microneedle assisted photoimmunotherapy to boost the immunotherapy efficiency. J Control Release 2024; 367:1-12. [PMID: 38244844 DOI: 10.1016/j.jconrel.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.
Collapse
Affiliation(s)
- Chaonan Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Minglong Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Xiaodie Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yanping Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Qiaoli Wu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511300, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Ando D, Miyatsuji M, Sakoda H, Yamamoto E, Miyazaki T, Koide T, Sato Y, Izutsu KI. Mechanical Characterization of Dissolving Microneedles: Factors Affecting Physical Strength of Needles. Pharmaceutics 2024; 16:200. [PMID: 38399254 PMCID: PMC10893124 DOI: 10.3390/pharmaceutics16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Megumi Miyatsuji
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Hideyuki Sakoda
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Tochigi, Japan
| |
Collapse
|
5
|
Kim JC, Choi JA, Park H, Yang E, Noh S, Kim JS, Kim MJ, Song M, Park JH. Pharmaceutical and Immunological Evaluation of Cholera Toxin A1 Subunit as an Adjuvant of Hepatitis B Vaccine Microneedles. Pharm Res 2023; 40:3059-3071. [PMID: 37914841 DOI: 10.1007/s11095-023-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine. METHODS In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine. RESULTS All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide-based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide-based formulation induced. CONCLUSIONS CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.
Collapse
Affiliation(s)
- Jong-Chan Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Hayan Park
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Eunji Yang
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Shinyoung Noh
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Ji-Seok Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Moon-Jin Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, South Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea.
| |
Collapse
|
6
|
Wu Y, Tang Z, Ma S, Du L. The promising application of hydrogel microneedles in medical application. J Pharm Pharmacol 2023:rgad058. [PMID: 37330272 DOI: 10.1093/jpp/rgad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Hydrogel microneedles are emerging, and promising microneedles mainly composed of swelling polymers. This review is intended to summarize the preparation materials, formation mechanisms, applications and existing problems of hydrogel microneedles. METHODS We collected the literature on the materials, preparation and application of hydrogel microneedles in recent years, and summarized their mechanism and application in drugs delivery. KEY FINDINGS Hydrogel microneedles have higher safety and capabilities of controlled drug release, and have been mainly used in tumour and diabetes treatment, as well as clinical monitoring. In recent years, hydrogel microneedles have shown great potential in drug delivery, and have played the role of whitening, anti-inflammatory and promoting healing. CONCLUSIONS As an emerging drug delivery idea, hydrogel microneedles for drug delivery has gradually become a research hotspot. This review will provide a systematic vision for the favourable development of hydrogel microneedles and their promising application in medicine, especially drug delivery.
Collapse
Affiliation(s)
- Yanping Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shan Ma
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Park CO, Kim HL, Park JW. Microneedle Transdermal Drug Delivery Systems for Allergen-Specific Immunotherapy, Skin Disease Treatment, and Vaccine Development. Yonsei Med J 2022; 63:881-891. [PMID: 36168240 PMCID: PMC9520048 DOI: 10.3349/ymj.2022.0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022] Open
Abstract
Transdermal drug delivery systems (TDDSs) overcome the hurdle of an intact skin barrier by penetrating the skin to allow molecules through. These systems reduce side effects associated with conventional hypodermic needles. Here, we introduce novel microneedle (MN) TDDSs that enhance drug delivery by creating micron-sized pores across the skin. Many MN TDDSs designed to deliver a diverse array of therapeutics, including allergen-specific immunotherapy, skin disease treatments, and vaccines, are under pre-clinical and clinical trials. Although epicutaneous approaches are emerging as new options for treating food allergy in many clinical trials, MN TDDSs could provide a more efficient and convenient route to deliver macromolecules. Furthermore, MN TDDSs may allow for safe vaccine delivery without permanent scars. MN TDDSs are a major emerging strategy for delivering novel vaccines and treatments for diseases, including skin diseases, allergic diseases, and so on.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Li Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Zhang XP, He YT, Li WX, Chen BZ, Zhang CY, Cui Y, Guo XD. An update on biomaterials as microneedle matrixes for biomedical applications. J Mater Chem B 2022; 10:6059-6077. [PMID: 35916308 DOI: 10.1039/d2tb00905f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedles (MNs) have been developed for various applications such as drug delivery, cosmetics, diagnosis, and biosensing. To meet the requirements of MNs used in these areas, numerous materials have been used for the fabrication of MNs. However, MNs will be exposed to skin tissues after piercing the stratum corneum barrier. Thus, it is necessary to ensure that the matrix materials of MNs have the characteristics of low toxicity, good biocompatibility, biodegradability, and sufficient mechanical properties for clinical application. In this review, the matrix materials currently used for preparing MNs are summarized and reviewed in terms of these factors. In addition, MN products used on the market and their applications are summarized in the end. This work may provide some basic information to researchers in the selection of MN matrix materials and in developing new materials.
Collapse
Affiliation(s)
- Xiao Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Xuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, P. R. China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
11
|
Don TM, Chen M, Lee IC, Huang YC. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int J Biol Macromol 2022; 207:90-99. [PMID: 35218808 DOI: 10.1016/j.ijbiomac.2022.02.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
Abstract
Dissolving microneedles made from natural polymers recently have gained much attention as an efficient transdermal drug delivery system (TDDS). For the first time, ulvan, a sulfated polysaccharide extracted from Ulva lactuca, was applied to fabricate dissolving microneedles through a two-step casting method. The ulvan microneedles (UMNs) made from 4% ulvan solution were in a pyramidal shape with an average height of 655 μm and an aspect ratio of 2.63. The in vitro skin insertion study showed the UMNs could totally penetrate into the porcine skin to the dermis layer and rapidly dissolved as the needle height was reduced by 90.3% after post-insertion of only 2 min. The rapid dissolution of UMNs in situ thus could release the loaded model drugs of rhodamine 6G (R6G) and bovine serum albumin-fluorescein isothiocyanate conjugate (FITC-BSA) in the skin tissue. The in vitro drug release profiles through porcine skin revealed the UMNs markedly enhanced the cumulative release of FITC-BSA. In addition, the UMNs had good biocompatibility towards normal cells of HaCaT and NIH3T3. Briefly, this study demonstrates the rapidly dissolving UMNs could effectively carry the drug into skin and thus can be developed as a potential TDDS in the pharmaceutical and cosmeceutical fields.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Michelle Chen
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No.101, Sec. 2, Guangfu Rd., Hsinchu City 30013, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| |
Collapse
|
12
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
13
|
Ito S, Hirobe S, Yamashita R, Sugiyama A, Takeuchi H, Eguchi R, Yoshida J, Oyamada T, Tachibana M, Okada N. Analysis of immune response induction mechanisms implicating the dose-sparing effect of transcutaneous immunization using a self-dissolving microneedle patch. Vaccine 2022; 40:862-872. [PMID: 34998604 DOI: 10.1016/j.vaccine.2021.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
Transcutaneous immunization (TCI) is an effective vaccination method that is easier and less painful than the conventional injectable vaccination method. We previously developed self-dissolving microneedle patches (sdMN) and demonstrated that this TCI method has a high vaccination efficacy in mice and humans. To elucidate the mechanism of immune response induction, which is the basis for the efficacy and safety of TCI with sdMN, we examined the local reaction of the skin where sdMN was applied and the kinetics and differentiation status of immune cells in the draining lymph nodes (DLNs). We found that gene expression of the proinflammatory cytokine Il1b and the downstream transcription factor Irf7 was markedly upregulated in skin tissues after sdMN application. Moreover, activation of Langerhans cells and CD207- dermal dendritic cells, which are subsets of antigen-presenting cells (APCs) in the skin, and their migration to the DLNs were promoted. Furthermore, the activated APC subsets promoted CD4+ T cell and B cell differentiation and the formation of germinal centers, which are the sites of high-affinity antibody production. These phenomena associated with sdMN application may contribute to the efficient production of antigen-specific antibodies after TCI using sdMN. These findings provide essential information regarding immune response induction mechanisms for the development and improvement of TCI preparations.
Collapse
Affiliation(s)
- Sayami Ito
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Yamashita
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Arisa Sugiyama
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Honoka Takeuchi
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Eguchi
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junya Yoshida
- FUJIFILM Advanced Research Laboratories, Fujifilm Holdings Corporation, 577-1 Ushijima, Kaisei Town, Ashigarakami-gun, Kanagawa Prefecture 258-8577, Japan
| | - Takayoshi Oyamada
- FUJIFILM Advanced Research Laboratories, Fujifilm Holdings Corporation, 577-1 Ushijima, Kaisei Town, Ashigarakami-gun, Kanagawa Prefecture 258-8577, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
15
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
16
|
Ando D, Miyazaki T, Yamamoto E, Koide T, Izutsu KI. Chemical imaging analysis of active pharmaceutical ingredient in dissolving microneedle arrays by Raman spectroscopy. Drug Deliv Transl Res 2021; 12:426-434. [PMID: 34431066 DOI: 10.1007/s13346-021-01052-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to develop a quality evaluation method for dissolving microneedle arrays (DMNAs) and determine the spatial distribution pattern of drugs in DMNAs. Raman spectroscopy mapping was used to visualize the drug distribution in DMNAs and drug-loaded polymer films as a model. Powder X-ray diffraction (PXRD) and high-pressure liquid chromatography were also performed to characterize DMNAs. Drug-loaded polymer films and DMNAs were prepared by drying the aqueous solutions spread on the plates or casting. PXRD analysis suggested the crystallization of diclofenac sodium (DCF) in several forms depending on its amount in the sodium hyaluronate (HA)-based films. The Raman spectra of HA and DCF showed characteristic and non-overlapping peaks at 1376 and 1579 cm-1 Raman shifts, respectively. The intensity of the characteristic peak of DCF in the DCF-loaded films increased linearly with the increasing drug content in the range of 4.8 to 16.7% (DCF, w/w). Raman imaging analysis revealed a homogenous dispersion of small DCF crystals in these films. Raman imaging indicates the distribution of DCF on the surface of the DMNA needle. This work highlights the benefit of using Raman spectroscopy mapping to reveal the spatial distribution of drugs in DMNAs.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
17
|
Yan Q, Wang W, Weng J, Zhang Z, Yin L, Yang Q, Guo F, Wang X, Chen F, Yang G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer's disease. Drug Deliv 2020; 27:1147-1155. [PMID: 32729341 PMCID: PMC7470133 DOI: 10.1080/10717544.2020.1797240] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
Increasingly attention has been paid to the transdermal drug delivery systems with microneedles owing to their excellent compliance, high efficiency, and controllable drug release, therefore, become promising alternative with tremendous advantages for delivering specific drugs such as huperzine A (Hup A) for treatment of Alzheimer's disease (AD) yet with low oral bioavailability. The purpose of the present study is to design, prepare, and evaluate a dissolving microneedle patch (DMNP) as a transdermal delivery system for the Hup A, investigating its in vitro drug release profiles and in vivo pharmacokinetics as well as pharmacodynamics treating of AD. Skin penetration experiments and intradermal dissolution tests showed that the blank DMNP could successfully penetrate the skin with an adequate depth and could be quickly dissolved within 5 min. In vitro transdermal release tests exhibited that more than 80% of the Hup A was accumulatively permeated from DMNP through the skin within three days, indicating a sustained release profile. In vivo pharmacokinetic analysis demonstrated that the DMNP group resulted in longer T max (twofold), longer t 1/2 (fivefold), lower C max (3:4), and larger AUC(0-∞) (twofold), compared with the oral group at the same dose of Hup A. Pharmacodynamic research showed a significant improvement in cognitive function in AD rats treated with DMNP-Hup A and Oral-Hup A, as compared to the model group without treatment. Those results demonstrated that this predesigned DMNP is a promising alternative to deliver Hup A transdermally for the treatment of AD.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weiwei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhenghan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lina Yin
- Zhejiang Academy of Medical Sciences, Institute of Materia Medica, Hangzhou, China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| | - Fangyuan Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xingang Wang
- Department of Burns, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fan Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Life Sciences School of Hubei University, Wuhan, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Zhu DD, Zhang XP, Zhang BL, Hao YY, Guo XD. Safety Assessment of Microneedle Technology for Transdermal Drug Delivery: A Review. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bao Li Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yu Ying Hao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
19
|
Characteristic of K3 (CpG-ODN) as a Transcutaneous Vaccine Formulation Adjuvant. Pharmaceutics 2020; 12:pharmaceutics12030267. [PMID: 32183437 PMCID: PMC7151019 DOI: 10.3390/pharmaceutics12030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/18/2023] Open
Abstract
Transcutaneous immunization (TCI) is easy to use, minimally invasive, and has excellent efficacy in vaccines against infections. We focused on toll-like receptor (TLR) ligands as applicable adjuvants for transcutaneous formulations and characterized immune responses. TCI was performed using poke-and-patch methods, in which puncture holes are formed with a polyglycolic acid microneedle on the back skin of mice. Various TLR ligands were applied to the puncture holes and covered with an ovalbumin-loaded hydrophilic gel patch. During the screening process, K3 (CpG-oligonucleotide) successfully produced more antigen-specific antibodies than other TLR ligands and induced T helper (Th) 1-type polarization. Transcutaneously administered K3 was detected in draining lymph nodes and was found to promote B cell activation and differentiation, suggesting a direct transcutaneous adjuvant activity on B cells. Furthermore, a human safety test of K3-loaded self-dissolving microneedles (sdMN) was performed. Although a local skin reaction was observed at the sdMN application site, there was no systemic side reaction. In summary, we report a K3-induced Th1-type immune response that is a promising adjuvant for transcutaneous vaccine formulations using MN and show that K3-loaded sdMN can be safely applied to human skin.
Collapse
|
20
|
Li Z, He Y, Deng L, Zhang ZR, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B 2019; 8:216-225. [PMID: 31803892 DOI: 10.1039/c9tb02061f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedle (MN) arrays offer an alternative approach to hypodermic injection via syringe needles. In this work, polyvinylpyrrolidone (PVP)-based fast dissolving MN arrays were developed in which the needle tips were loaded with chitosan nanoparticles (NPs) for coencapsulation of a model antigen, ovalbumin (OVA), and an adjuvant, CpG oligodeoxynucleotides (CpG). After insertion into the skin, these MN arrays fully dissolved within 3 min to release antigen and adjuvant co-loaded NPs rapidly in the epidermal layer. Positively charged chitosan was proven to be an excellent carrier for negatively charged OVA and CpG, which formed nanocomplexes via simple electrostatic interactions and greatly enhanced the uptake efficiency of OVA in DC2.4 dendritic cells. Vaccination studies in mice further demonstrated that chitosan NPs effectively accumulated in peripheral lymph nodes, thus inducing greatly enhanced immune responses compared to those of free OVA. The antibody dose-response curve further demonstrated that MN immunization achieved comparable levels of immune responses as compared to conventional subcutaneous injections in a more convenient and less invasive way. Overall, a PVP-based fast dissolving MN array with chitosan NPs represents a promising and robust platform system for efficient transcutaneous vaccine delivery.
Collapse
Affiliation(s)
- Zhilin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yingju He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital and Evidence-Based Pharmacy Center and Key Laboratory of Birth Defects and Related Diseases of Woman and Children, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Albarahmieh E, AbuAmmouneh L, Kaddoura Z, AbuHantash F, Alkhalidi BA, Al-Halhouli A. Fabrication of Dissolvable Microneedle Patches Using an Innovative Laser-Cut Mould Design to Shortlist Potentially Transungual Delivery Systems: In Vitro Evaluation. AAPS PharmSciTech 2019; 20:215. [PMID: 31172376 DOI: 10.1208/s12249-019-1429-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
There has been a great interest towards transungual delivery systems due to limited drug penetration for the treatment of nail diseases. More important, antifungal oral medicaments used may cause serious side effects including liver damage. Therefore, we propose non-oral dissolvable microneedle (MN) patch to strike the poor permeability of the nail. We report the design of MN patch mould using a laser-cutting machine and solvent casting of several hydrophilic polymers to fabricate these MN patches. Formulations were evaluated for their in vitro release and penetration properties and selected based on physical characterization for compatibility (differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD)), dimension repeatability and drug content uniformity. A 72-array of cone-shaped MN patch mould was successfully constructed on polymethylmethacrylate sheets. Interval and frequency of laser exposure were pivotal to determine the needle sharpness, attained unexpectedly at a low level of circa 30 μm. F1 platform of polyvinyl alcohol, kollicoat IR®, ethylene glycol and gelatin showed circa 74% penetration of methylhydroxy-4-benzoate (F1(A)) over 24 h, whereas F2 (same as F1-A with the addition of poloxamer 338) resulted in an almost 42% of this drug retention in the bovine hoof (24 h). Both formulations are likely to be useful for onychomycosis treatment. F1 polymers also afford enhanced permeability (almost 73.5% after 24 h) of terbinafine hydrochloride into the hoof (F1(B)). However, F3 (chitosan, gelatin and ethylene glycol) presents the prospect of developing MN patch for this drug with almost complete hoof penetration (circa 96.3% after 24 h). All medicated formulations have shown similar mechanical properties after ageing for 1 year under dry conditions.
Collapse
|
22
|
Ono A, Ito S, Sakagami S, Asada H, Saito M, Quan YS, Kamiyama F, Hirobe S, Okada N. Correction: Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery. Pharmaceutics, 2017, 9(3), 27. Pharmaceutics 2017; 9:E59. [PMID: 29258173 PMCID: PMC5750665 DOI: 10.3390/pharmaceutics9040059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022] Open
Abstract
The authors wish to make a change to their published paper [1].[...].
Collapse
Affiliation(s)
- Akihiko Ono
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.O.); (S.I.); (S.S.)
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Sayami Ito
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.O.); (S.I.); (S.S.)
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Shun Sakagami
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.O.); (S.I.); (S.S.)
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Hideo Asada
- Department of Dermatology, Nara Medical University, 840 Shin-cho, Kashihara, Nara 634-8522, Japan;
| | - Mio Saito
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan; (M.S.); (Y.-S.Q.); (F.K.)
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan; (M.S.); (Y.-S.Q.); (F.K.)
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan; (M.S.); (Y.-S.Q.); (F.K.)
| | - Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.O.); (S.I.); (S.S.)
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan;
- Laboratory of Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|