1
|
Jere SW, Abrahamse H, Houreld NN. Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing. J Biomed Sci 2023; 30:81. [PMID: 37735655 PMCID: PMC10515080 DOI: 10.1186/s12929-023-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
The induction of a cells destiny is a tightly controlled process that is regulated through communication between the matrix and cell signalling proteins. Cell signalling activates distinctive subsections of target genes, and different signalling pathways may be used repeatedly in different settings. A range of different signalling pathways are activated during the wound healing process, and dysregulated cellular signalling may lead to reduced cell function and the development of chronic wounds. Diabetic wounds are chronic and are characterised by the inability of skin cells to act in response to reparative inducements. Serine/threonine kinase, protein kinase B or AKT (PKB/AKT), is a central connection in cell signalling induced by growth factors, cytokines and other cellular inducements, and is one of the critical pathways that regulate cellular proliferation, survival, and quiescence. AKT interacts with a variety of other pathway proteins including glycogen synthase kinase 3 beta (GSK3β) and β-catenin. Novel methodologies based on comprehensive knowledge of activated signalling pathways and their interaction during normal or chronic wound healing can facilitate quicker and efficient diabetic wound healing. In this review, we focus on interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing.
Collapse
Affiliation(s)
- Sandy Winfield Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| |
Collapse
|
2
|
Li H, Zheng C, Xu H, Li J, Song C, Li J, Wu L, Yang F, Zhang Y, Shi W, Yao J. Diatomic terahertz metasurfaces for arbitrary-to-circular polarization conversion. NANOSCALE 2022; 14:12856-12865. [PMID: 36040140 DOI: 10.1039/d2nr03483b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polarization control is crucial for tailoring light-matter interactions. Direct manipulation of arbitrarily incident polarized waves could provide more degrees of freedom in the design of integrated and miniaturized terahertz (THz) devices. Metasurfaces with unprecedented wave manipulation capabilities could serve as candidates for fulfilling this requirement. Here, a kind of all-silicon metasurface is demonstrated to realize the conversion of arbitrary incident polarization states to circular polarization states in the THz band through the mutual interference of monolayer achiral meta-atoms. Also, we confirmed that the conversion intensities are controllable using the evolution behavior of arbitrary polarization states defined on the Poincaré sphere. Meta-platforms with circularly polarized incidence experience spin-selective destructive or constructive interference, exhibiting broadband circular dichroism (BCD) in the target frequency range. Based on the versatility of the proposed design, the feasibility of the theoretical derivation has been verified in the experiment process. By introducing the geometric phase principle, the proposed design is demonstrated to be an attractive alternative to achieve chiral wavefront manipulation. This work may provide a promising avenue to replace the cumbersome cascaded optical building blocks with an ultrathin meta-platform, which can be used in chiral spectroscopy, imaging, optical communication, and so on.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Chenglong Zheng
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Hang Xu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jie Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Chunyu Song
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jitao Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Liang Wu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Fan Yang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Wei Shi
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
- Department of Electrical and Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| |
Collapse
|
3
|
Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers (Basel) 2022; 14:polym14153150. [PMID: 35956667 PMCID: PMC9370794 DOI: 10.3390/polym14153150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors “fibrin AND low-level laser therapy” and “fibrin AND photobiomodulation” were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
Collapse
|
4
|
5G Electromagnetic Radiation Attenuates Skin Melanogenesis In Vitro by Suppressing ROS Generation. Antioxidants (Basel) 2022; 11:antiox11081449. [PMID: 35892650 PMCID: PMC9331092 DOI: 10.3390/antiox11081449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, the impacts of 5G electromagnetic radiation (EMR) with 28 GHz on human health have been attracting public attention with the advent of 5G wireless communication. Here, we report that 5G (28 GHz) EMR can attenuate the skin pigmentation in murine melanoma cells (B16F10) and a 3D pigmented human epidermis model (Melanoderm™). B16 cells were exposed to 5G (28 GHz) with or without α-MSH for 4 h per day. Interestingly, 5G attenuated α-MSH-induced melanin synthesis. Fontana-Masson staining confirmed that the dendritic formation of α-MSH stimulated B16 cells was diminished by 5G exposure. To confirm the anti-melanogenic effect of 5G EMR, MelanoDerm™ was irradiated with 5G at a power intensity of 10 W/m2 for 4 h a day for 16 days and melanin distribution was detected with Fontana-Masson staining, which supported the anti-melanogenic effect of 5G EMR. Consistently, 5G EMR suppressed α-MSH induced upregulation of melanogenic enzymes; tyrosinase, TRP-1, and TRP-2. Of note, 5G EMR attenuated ROS production stimulated by α-MSH and H2O2, suggesting that 5G EMR may dissipate ROS generation, which is pivotal for the melanin synthesis. Collectively, we demonstrated that 5G EMR can attenuate skin pigmentation by attenuating ROS generation.
Collapse
|
5
|
Spinella A, de Pinto M, Galluzzo C, Testoni S, Macripò P, Lumetti F, Parenti L, Magnani L, Sandri G, Bajocchi G, Starnoni M, De Santis G, Salvarani C, Giuggioli D. Photobiomodulation Therapy: A New Light in the Treatment of Systemic Sclerosis Skin Ulcers. Rheumatol Ther 2022; 9:891-905. [PMID: 35334095 PMCID: PMC9127012 DOI: 10.1007/s40744-022-00438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Skin ulcers (SU) represent one of the most frequent manifestations of systemic sclerosis (SSc), occurring in almost 50% of scleroderma patients. SSc-SU are often particularly difficult to treat with conventional systemic and local therapies. In this study, a preliminary evaluation of the role and effectiveness of blue light photobiomodulation (PBM) therapy with EmoLED® in the treatment of scleroderma skin ulcers (SSc-SU) was performed. METHODS We retrospectively analyzed 12 consecutive SSc patients with a total of 15 SU on finger hands. All patients were treated with adequate systemic therapy and local treatment for SU; after a standard skin ulcer bed preparation with debridement of all lesions, EmoLED® was performed. All patients were locally treated every week during 2 months of follow-up; SU data were collected after 4 weeks (T4) and 8 weeks (T8). Eight SSc patients with comparable SU were also evaluated as controls. RESULTS The application of EmoLED® in addition to debridement apparently produced faster healing of SU. Complete healing of SU was recorded in 41.6% cases during EmoLED® treatment. Significant improvements in SU area, length, and width, wound bed, and related pain were observed in EmoLED® patients from T0 to T8. Control subjects treated with standard systemic/local therapies merely showed an amelioration of SU area and width at the end of the follow-up. No procedural or post-procedural adverse events were reported. CONCLUSIONS The positive clinical results and the absence of side effects suggest that EmoLED® could be a promising tool in the management of SSc-SU, with an interesting role to play in the healing process in addition to conventional systemic and local treatments.
Collapse
Affiliation(s)
- Amelia Spinella
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Marco de Pinto
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Claudio Galluzzo
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Sofia Testoni
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Pierluca Macripò
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Federica Lumetti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Parenti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Magnani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Gilda Sandri
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | | | - Marta Starnoni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Dilia Giuggioli
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy.
| |
Collapse
|