1
|
Li Y, Hei J, He X, Rui R, Wang S. The Relationship between Endophytic Fungi of Chimonanthus praecox and Volatile Metabolites under Different Circadian Rhythms and Blooming Stages. J Fungi (Basel) 2024; 10:145. [PMID: 38392817 PMCID: PMC10890430 DOI: 10.3390/jof10020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chimonanthus praecox is an aromatic plant that flowers in winter. The composition of the floral volatiles of C. praecox is influenced by different blooming stages, circadian rhythms and species. However, the relationship between floral volatiles and plant endophytic fungi has not received much research attention. Here, we used high-throughput sequencing technology to compare and analyze the changes in the structure and diversity of the endophytic fungal communities in C. praecox under different circadian rhythms (7:00 a.m., 1:00 p.m., and 7:00 p.m.) and in different blooming stages (unopened flowers and opened flowers). The endophytic fungi of C. praecox consisted of nine phyla, 34 classes, 79 orders, 181 families, 293 genera, and 397 species, and Ascomycota was the dominant phylum. Under a diurnal rhythm, the diversity (Chao1 and Shannon indices) of endophytic fungi gradually decreased in the unopened flowers, while an increasing and then decreasing trend was found for the opened flowers. In the different blooming stages, the endophytic fungal diversity was significantly higher at 7:00 a.m. in the unopened flowers compared to the opened flowers. Humidity was the key factors that significantly affected the endophytic fungal diversity and community. Moreover, 11 endophytic fungi were significantly positively or negatively correlated with seven floral volatiles. In conclusion, the community structure and diversity of endophytic fungi in C. praecox were affected by the different blooming stages and circadian rhythms, and a correlation effect related to floral volatiles was found, but there are other possible reasons that were not tested. This study provides a theoretical basis for elucidating the interrelationships between endophytic fungi, floral volatiles, and environmental factors in C. praecox.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Underforest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest Forestry University, Kunming 650224, China
| | - Jingying Hei
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming 650233, China
| | - Xiahong He
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming 650233, China
| | - Rui Rui
- Key Laboratory of Underforest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming 650233, China
| | - Shu Wang
- Key Laboratory of Underforest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming 650233, China
| |
Collapse
|
2
|
Hartvig I, Kosawang C, Rasmussen H, Kjær ED, Nielsen LR. Co-occurring orchid species associated with different low-abundance mycorrhizal fungi from the soil in a high-diversity conservation area in Denmark. Ecol Evol 2024; 14:e10863. [PMID: 38304271 PMCID: PMC10828919 DOI: 10.1002/ece3.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Plant-fungal interactions are ubiquitous across ecosystems and contribute significantly to plant ecology and evolution. All orchids form obligate symbiotic relationships with specific fungi for germination and early growth, and the distribution of terrestrial orchid species has been linked to occurrence and abundance of specific orchid mycorrhizal fungi (OMF) in the soil. The availability of OMF can therefore be a habitat requirement that is relevant to consider when establishing management and conservation strategies for threatened orchid species, but knowledge on the spatial distribution of OMF in soil is limited. We here studied the mycorrhizal associations of three terrestrial orchid species (Anacamptis pyramidalis, Orchis purpurea and Platanthera chlorantha) found in a local orchid diversity hotspot in eastern Denmark, and investigated the abundance of the identified mycorrhizal fungi in the surrounding soil. We applied ITS metabarcoding to samples of orchid roots, rhizosphere soil and bulk soil collected at three localities, supplemented with standard barcoding of root samples with OMF specific primers, and detected 22 Operational Taxonomic Units (OTUs) putatively identified as OMF. The three orchid species displayed different patterns of OMF associations, supporting the theory that association with specific fungi constitutes part of an orchid's ecological niche allowing co-occurrence of many species in orchid-rich habitats. The identified mycorrhizal partners in the basidiomycete families Tulasnellaceae and Ceratobasidiaceae (Cantharallales) were detected in low abundance in rhizosphere soil, and appeared almost absent from bulk soil at the localities. This finding highlights our limited knowledge of the ecology and trophic mode of OMF outside orchid tissues, as well as challenges in the detection of specific OMF with standard methods. Potential implications for management and conservation strategies are discussed.
Collapse
Affiliation(s)
- Ida Hartvig
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Smithsonian Environmental Research CenterSmithsonian InstituteEdgewaterMarylandUSA
| | - Chatchai Kosawang
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Rasmussen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Erik Dahl Kjær
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Lene Rostgaard Nielsen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Huang M, Gao D, Lin L, Wang S, Xing S. Spatiotemporal dynamics and functional characteristics of the composition of the main fungal taxa in the root microhabitat of Calanthe sieboldii (Orchidaceae). BMC PLANT BIOLOGY 2022; 22:556. [PMID: 36456905 PMCID: PMC9716840 DOI: 10.1186/s12870-022-03940-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Endophytic fungi play a critical ecological role in the growth and development of orchids, but little is known about the spatial and temporal dynamics of fungal diversity or the ecological functions of fungi during orchid growth and reproduction. Calanthe sieboldii Decne. is listed in the Chinese National Key Protected Wild Plants as a class I protected wild plant. To understand the community characteristics of root and soil fungi of the orchid during its reproductive seasons, we investigated the community composition, spatial and temporal dynamics, and functional characteristics of the orchid microhabitat fungi by using diversity and ecological functional analyses. RESULTS We discovered that there were three, seven, and four dominant fungal families in the orchid's roots, rhizoplane soil, and rhizosphere soil, respectively. Tulasnellaceae, Aspergillaceae, and Tricholomataceae were the dominant fungi in this endangered orchid's microhabitats. The closer the fungal community was to the orchid, the more stable and the less likely the community composition to change significantly over time. The fungal communities of this orchid's roots and rhizoplane soil varied seasonally, while those of the rhizosphere soil varied interannually. Saprophytic fungi were the most abundant in the orchid's fungal community, and the closer the distance to the orchid, the more symbiotic fungi were present. CONCLUSIONS The fungi in different parts of the root microhabitat of C. sieboldii showed different spatiotemporal dynamic patterns. The fungal community near the orchid roots was relatively stable and displayed seasonal variation, while the community further away from the roots showed greater variation. In addition, compared with the soil fungi, the dominant endophytic fungi were more stable, and these may be key fungi influencing orchid growth and development. Our study on the spatiotemporal dynamics and functions of fungi provides a basis for the comprehensive understanding and utilization of orchid endophytic fungi.
Collapse
Affiliation(s)
- Min Huang
- School of Ecology and Nature Conservation, Beijing Forestry University, Haidian, Beijing, 100083, China
| | - Dazhong Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Haidian, Beijing, 100083, China
| | - Lele Lin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Shengcai Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Haidian, Beijing, 100083, China
| | - Shaohua Xing
- School of Ecology and Nature Conservation, Beijing Forestry University, Haidian, Beijing, 100083, China.
| |
Collapse
|
4
|
Jiawen C, Yuan W, Xin Z, Junjie G, Xing H, Jinglei X. Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. ENVIRONMENTAL MICROBIOME 2022; 17:52. [PMID: 36271421 PMCID: PMC9585767 DOI: 10.1186/s40793-022-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rhizosphere fungi and endophytic fungi play key roles in plant growth and development; however, their role in the growth of Epimedium koreanum Nakai at different stages remains unclear. Here, we used the Illumina MiSeq system, a high-throughput sequencing technology, to study the endophytic fungi and rhizosphere microbiome of Korean Epimedium. RESULTS Epimedium koreanum Nakai rhizosphere soil and leaves had highly diverse fungal communities during the growth process. The relative abundance of soil fungi in the rhizosphere stage was higher than that of leaf endophytic fungi in the early growth stage, but the overall abundance was basically equal. Sebacina is a significantly divergent fungal genera, and Sebacina sp. are present among leaf fungi species in the rhizosphere soil of Epimedium koreanum Nakai. Sebacina sp. can move to each other in rhizosphere soil fungi and leaf endophytes. VIF (variance inflation factor) analysis showed that soluble salt, whole nitrogen, alkaline lysis nitrogen, whole phosphorus, total potassium, and fast-acting potassium are useful environmental factors for rhizosphere soil and leaf endophytic fungi: potassium, total nitrogen, whole phosphorus, and three environmental factors were significantly and positively associated with the relative abundance of Sebacina sp. CONCLUSIONS (1) This study is the first to clarify the species diversity of fungi in Epimedium koreanum Nakai leaf and rhizosphere soil. (2) Different fungal communities of rhizosphere soil fungi and leaf endophytic fungi at different growth stages of Epimedium koreanum Nakai were examined. (3) Sebacina sp. can move to each other between rhizosphere soil fungi and leaf endophytic fungi. (4) Nitrogen, phosphorus and potassium elements in the environment have a significant positive effect on the relative abundance of Sebacina sp.
Collapse
Affiliation(s)
- Chen Jiawen
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Wu Yuan
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Zhuang Xin
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Guo Junjie
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Hu Xing
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| | - Xiao Jinglei
- Institute of Identification Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jin Lin Province China
| |
Collapse
|
5
|
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J, Minasiewicz J, Martos F. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? ANNALS OF BOTANY 2022; 129:259-270. [PMID: 34718377 PMCID: PMC8835631 DOI: 10.1093/aob/mcab134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.
Collapse
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - María Isabel Mujica
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile, & Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - Liam Laurent
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Tomáš Figura
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Amelia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
6
|
Mycorrhizal Fungal Partners Remain Constant during a Root Lifecycle of Pleione bulbocodioides (Orchidaceae). J Fungi (Basel) 2021; 7:jof7110994. [PMID: 34829281 PMCID: PMC8621020 DOI: 10.3390/jof7110994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Mycorrhizal mutualisms are vital for orchids through germination to adulthood. Fungal species diversity and community composition vary across seasons and plant development stages and affect plant survival, adaptation, and community maintenance. Knowledge of the temporal turnover of mycorrhizal fungi (OMF) remains poorly understood in the eco-physiologically diverse orchids (especially in epiphytic orchids), although it is important to understand the function and adaptation of mycorrhizae. Some species of Pleione are epiphytic plants with annual roots and may recruit different fungal partners during their root lifecycle. Based on continuous samplings of Pleione bulbocodioides during a whole root lifecycle, we characterized the fungal temporal dynamics using Illumina sequencing of the ITS2 region. Our data showed that the plants of P. bulbocodioides were quickly colonized by OMF at root emergence and had a constant OMF composition throughout one root lifecycle, although the OMF richness declined with root aging after a peak occurrence during root elongation. In contrast, the richness of root-inhabiting fungal endophytes kept increasing with root aging and more drastic turnovers were found in their species compositions. Our findings of OMF temporal turnover contribute to further understanding of mycorrhizal associations and adaptation of Orchidaceae and will benefit orchid resource conservation and utilization.
Collapse
|
7
|
Li T, Yang W, Wu S, Selosse MA, Gao J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:646325. [PMID: 34025694 PMCID: PMC8138444 DOI: 10.3389/fpls.2021.646325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
Orchids form mycorrhizal symbioses with fungi in natural habitats that affect their seed germination, protocorm growth, and adult nutrition. An increasing number of studies indicates how orchids gain mineral nutrients and sometime even organic compounds from interactions with orchid mycorrhizal fungi (OMF). Thus, OMF exhibit a high diversity and play a key role in the life cycle of orchids. In recent years, the high-throughput molecular identification of fungi has broadly extended our understanding of OMF diversity, revealing it to be a dynamic outcome co-regulated by environmental filtering, dispersal restrictions, spatiotemporal scales, biogeographic history, as well as the distribution, selection, and phylogenetic spectrum width of host orchids. Most of the results show congruent emerging patterns. Although it is still difficult to extend them to all orchid species or geographical areas, to a certain extent they follow the "everything is everywhere, but the environment selects" rule. This review provides an extensive understanding of the diversity and ecological dynamics of orchid-fungal association. Moreover, it promotes the conservation of resources and the regeneration of rare or endangered orchids. We provide a comprehensive overview, systematically describing six fields of research on orchid-fungal diversity: the research methods of orchid-fungal interactions, the primer selection in high-throughput sequencing, the fungal diversity and specificity in orchids, the difference and adaptability of OMF in different habitats, the comparison of OMF in orchid roots and soil, and the spatiotemporal variation patterns of OMF. Further, we highlight certain shortcomings of current research methodologies and propose perspectives for future studies. This review emphasizes the need for more information on the four main ecological processes: dispersal, selection, ecological drift, and diversification, as well as their interactions, in the study of orchid-fungal interactions and OMF community structure.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Huang BS, Liu D, Chen J, Yang H, Yousaf Z, Liu CY. Growth promotion effects of bacillus subtilis on bletilla striata seedlings. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.317484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Huang BS, Liu D, Chen J, Yang H, Yousaf Z, Liu CY. Growth promotion effects of bacillus subtilis on bletilla striata seedlings. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_31_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|