1
|
Yu G, Li F, Wang X, Zhang Y, Zhou K, Yang W, Guan X, Zhang X, Xu C, Xu Y. Enhancing Across-Population Genomic Prediction for Maize Hybrids. PLANTS (BASEL, SWITZERLAND) 2024; 13:3105. [PMID: 39520023 PMCID: PMC11548338 DOI: 10.3390/plants13213105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In crop breeding, genomic selection (GS) serves as a powerful tool for predicting unknown phenotypes by using genome-wide markers, aimed at enhancing genetic gain for quantitative traits. However, in practical applications of GS, predictions are not always made within populations or for individuals that are genetically similar to the training population. Therefore, exploring possibilities and effective strategies for across-population prediction becomes an attractive avenue for applying GS technology in breeding practices. In this study, we used an existing maize population of 5820 hybrids as the training population to predict another population of 523 maize hybrids using the GBLUP and BayesB models. We evaluated the impact of optimizing the training population based on the genetic relationship between the training and breeding populations on the accuracy of across-population predictions. The results showed that the prediction accuracy improved to some extent with varying training population sizes. However, the optimal size of the training population differed for various traits. Additionally, we proposed a population structure-based across-population genomic prediction (PSAPGP) strategy, which integrates population structure as a fixed effect in the GS models. Principal component analysis, clustering, and Q-matrix analysis were used to assess the population structure. Notably, when the Q-matrix was used, the across-population prediction exhibited the best performance, with improvements ranging from 8 to 11% for ear weight, ear grain weight and plant height. This is a promising strategy for reducing phenotyping costs and enhancing maize hybrid breeding efficiency.
Collapse
Affiliation(s)
- Guangning Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Furong Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yuxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kai Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiusheng Guan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City 06600, Mexico;
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Ndlovu N, Kachapur RM, Beyene Y, Das B, Ogugo V, Makumbi D, Spillane C, McKeown PC, Prasanna BM, Gowda M. Linkage mapping and genomic prediction of grain quality traits in tropical maize ( Zea mays L.). Front Genet 2024; 15:1353289. [PMID: 38456017 PMCID: PMC10918846 DOI: 10.3389/fgene.2024.1353289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The suboptimal productivity of maize systems in sub-Saharan Africa (SSA) is a pressing issue, with far-reaching implications for food security, nutrition, and livelihood sustainability within the affected smallholder farming communities. Dissecting the genetic basis of grain protein, starch and oil content can increase our understanding of the governing genetic systems, improve the efficacy of future breeding schemes and optimize the end-use quality of tropical maize. Here, four bi-parental maize populations were evaluated in field trials in Kenya and genotyped with mid-density single nucleotide polymorphism (SNP) markers. Genotypic (G), environmental (E) and G×E variations were found to be significant for all grain quality traits. Broad sense heritabilities exhibited substantial variation (0.18-0.68). Linkage mapping identified multiple quantitative trait loci (QTLs) for the studied grain quality traits: 13, 7, 33, 8 and 2 QTLs for oil content, protein content, starch content, grain texture and kernel weight, respectively. The co-localization of QTLs identified in our research suggests the presence of shared genetic factors or pleiotropic effects, implying that specific genomic regions influence the expression of multiple grain quality traits simultaneously. Genomic prediction accuracies were moderate to high for the studied traits. Our findings highlight the polygenic nature of grain quality traits and demonstrate the potential of genomic selection to enhance genetic gains in maize breeding. Furthermore, the identified genomic regions and single nucleotide polymorphism markers can serve as the groundwork for investigating candidate genes that regulate grain quality traits in tropical maize. This, in turn, can facilitate the implementation of marker-assisted selection (MAS) in breeding programs focused on improving grain nutrient levels.
Collapse
Affiliation(s)
- Noel Ndlovu
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Rajashekar M. Kachapur
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Veronica Ogugo
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Peter C. McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | | | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
3
|
Ndikuryayo C, Ndayiragije A, Kilasi NL, Kusolwa P. Identification of Drought Tolerant Rice ( Oryza Sativa L.) Genotypes with Asian and African Backgrounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:922. [PMID: 36840269 PMCID: PMC9967662 DOI: 10.3390/plants12040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Drought is among the major abiotic stresses on rice production that can cause yield losses of up to 100% under severe drought conditions. Neither of the rice varieties currently grown in Burundi can withstand very low and irregular precipitation. This study identified genotypes that have putative quantitative trait loci (QTLs) associated with drought tolerance and determined their performance in the field. Two hundred and fifteen genotypes were grown in the field under both drought and irrigated conditions. Genomic deoxyribonucleic acid (DNA) was extracted from rice leaves for further genotypic screening. The results revealed the presence of the QTLs qDTY12.1, qDTY3.1, qDTY2-2_1, and qDTY1.1 in 90%, 85%, 53%, and 22% of the evaluated genotypes, respectively. The results of the phenotypic evaluation showed a significant yield reduction due to drought stress. Yield components and other agronomic traits were also negatively affected by drought. Genotypes having high yield best linear unbiased predictions (BLUPs) with two or more major QTLs for drought tolerance, including IR 108044-B-B-B-3-B-B, IR 92522-45-3-1-4, and BRRI DHAN 55 are of great interest for breeding programs to improve the drought tolerance of lines or varieties with other preferred traits.
Collapse
Affiliation(s)
- Cyprien Ndikuryayo
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro P.O. Box 3001, Tanzania
- International Rice Research Institute (IRRI), Bujumbura P.O. Box 5132, Burundi
- Burundi Institute of Agricultural Sciences (ISABU), Avenue de la Cathédrale, Bujumbura P.O. Box 795, Burundi
| | - Alexis Ndayiragije
- International Rice Research Institute (IRRI), Bujumbura P.O. Box 5132, Burundi
| | - Newton Lwiyiso Kilasi
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro P.O. Box 3001, Tanzania
| | - Paul Kusolwa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro P.O. Box 3001, Tanzania
| |
Collapse
|
4
|
Prasanna BM, Bruce A, Beyene Y, Makumbi D, Gowda M, Asim M, Martinelli S, Head GP, Parimi S. Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3897-3916. [PMID: 35320376 PMCID: PMC9729323 DOI: 10.1007/s00122-022-04073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Sustainable control of fall armyworm (FAW) requires implementation of effective integrated pest management (IPM) strategies, with host plant resistance as a key component. Significant opportunities exist for developing and deploying elite maize cultivars with native genetic resistance and/or transgenic resistance for FAW control in both Africa and Asia. The fall armyworm [Spodoptera frugiperda (J.E. Smith); FAW] has emerged as a serious pest since 2016 in Africa, and since 2018 in Asia, affecting the food security and livelihoods of millions of smallholder farmers, especially those growing maize. Sustainable control of FAW requires implementation of integrated pest management strategies, in which host plant resistance is one of the key components. Significant strides have been made in breeding elite maize lines and hybrids with native genetic resistance to FAW in Africa, based on the strong foundation of insect-resistant tropical germplasm developed at the International Maize and Wheat Improvement Center, Mexico. These efforts are further intensified to develop and deploy elite maize cultivars with native FAW tolerance/resistance and farmer-preferred traits suitable for diverse agro-ecologies in Africa and Asia. Independently, genetically modified Bt maize with resistance to FAW is already commercialized in South Africa, and in a few countries in Asia (Philippines and Vietnam), while efforts are being made to commercialize Bt maize events in additional countries in both Africa and Asia. In countries where Bt maize is commercialized, it is important to implement a robust insect resistance management strategy. Combinations of native genetic resistance and Bt maize also need to be explored as a path to more effective and sustainable host plant resistance options. We also highlight the critical gaps and priorities for host plant resistance research and development in maize, particularly in the context of sustainable FAW management in Africa and Asia.
Collapse
Affiliation(s)
- Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya.
| | - Anani Bruce
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | | | | | - Graham P Head
- Regulatory Science, Bayer Crop Science US, Chesterfield, MO, USA
| | | |
Collapse
|
5
|
Loskutov IG. Advances in Cereal Crops Breeding. PLANTS 2021; 10:plants10081705. [PMID: 34451750 PMCID: PMC8399613 DOI: 10.3390/plants10081705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Igor G Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| |
Collapse
|