1
|
Janthamala S, Promraksa B, Thanee M, Duenngai K, Jusakul A, Kongpetch S, Kraiklang R, Thanee K, Pinlaor P, Namwat N, Saya H, Techasen A. Anticancer properties and metabolomic profiling of Shorea roxburghii extracts toward gastrointestinal cancer cell lines. BMC Complement Med Ther 2024; 24:178. [PMID: 38689275 PMCID: PMC11061966 DOI: 10.1186/s12906-024-04479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Gastrointestinal cancer (GIC) ranks as the highest cause of cancer-related deaths globally. GIC patients are often diagnosed at advanced stages, limiting effective treatment options. Chemotherapy, the common GIC recommendation, has significant disadvantages such as toxicity and adverse effects. Natural products contain substances with diverse pharmacological characteristics that promise for use in cancer therapeutics. In this study, the flower of renowned Asian medicinal plant, Shorea roxburghii was collected and extracted to investigate its phytochemical contents, antioxidant, and anticancer properties on GIC cells. METHODS The phytochemical contents of Shorea roxburghii extract were assessed using suitable methods. Phenolic content was determined through the Folin-Ciocalteu method, while flavonoids were quantified using the aluminum chloride (AlCl3) method. Antioxidant activity was evaluated using the FRAP and DPPH assays. Cytotoxicity was assessed in GIC cell lines via the MTT assay. Additionally, intracellular ROS levels and apoptosis were examined through flow cytometry techniques. The correlation between GIC cell viability and phytochemicals, 1H-NMR analysis was conducted. RESULTS Among the four different solvent extracts, ethyl acetate extract had the highest phenolic and flavonoid contents. Water extract exhibited the strongest reducing power and DPPH scavenging activity following by ethyl acetate. Interestingly, ethyl acetate extract demonstrated the highest inhibitory activity against three GIC cell lines (KKU-213B, HepG2, AGS) with IC50 values of 91.60 µg/ml, 39.38 µg/ml, and 35.59 µg/ml, while showing less toxicity to normal fibroblast cells. Ethyl acetate extract induced reactive oxygen species and apoptosis in GIC cell lines by downregulating anti-apoptotic protein Bcl-2. Metabolic profiling-based screening revealed a positive association between reduced GIC cell viability and phytochemicals like cinnamic acid and its derivatives, ferulic acid and coumaric acid. CONCLUSIONS This study highlights the potential of natural compounds in Shorea roxburghii in the development of more effective and safer anticancer agents as options for GIC as well as shedding light on new avenues for cancer treatment.
Collapse
Affiliation(s)
- Sutthiwan Janthamala
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Regional Medical Sciences Center 2 Phitsanulok, Department of Medical Sciences, Ministry of Public Health, Phitsanulok, Thailand
| | - Malinee Thanee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kunyarat Duenngai
- Department of Thai Traditional Medicine, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratthaphol Kraiklang
- Nutrition for Health Program, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Kidsada Thanee
- Faculty of Public Health, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hideyuki Saya
- Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
2
|
Sanou A, Konaté K, Kabakdé K, Dakuyo R, Bazié D, Hemayoro S, Dicko MH. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Sci Rep 2023; 13:358. [PMID: 36611043 PMCID: PMC9825363 DOI: 10.1038/s41598-023-27434-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Extracts from Hibiscus sabdariffa L. (roselle) have been used traditionally as a food, in herbal medicine, in hot and cold beverages, as flavouring or coloring agent in the food industry. In vitro and in vivo studies and trials provide evidence, but roselle is poorly characterised phytochemically due to the extraction processes. The optimization of the extraction of phenolic compounds and their antioxidant activities is still a hot topic. In this study, the effect of solute/solvent ratio (33, 40 and 50 mg/mL), extraction temperature (40, 50 and 60 °C) and extraction time (30, 60 and 90 min) was evaluated through the content of phenolic compounds and antioxidant activity. A response surface methodology through a Box-Behnken design was applied and model fit, regression equations, analysis of variance and 3D response curve were developed. The results showed that TPC, TFC, DPPH and FRAP were significantly influenced by temperature, extraction time and solvent/solute ratio. Thus, TPC, TFC, DPPH and FRAP varied from 5.25 to 10.58 g GAE/100 g DW; 0.28 to 0.81 g QE/100 g DW; 0.24 to 0.70 mg/mL; 2.4 to 6.55 g AAE/100 g DW respectively. The optimal experimental condition (41.81 mg/mL; 52.35 °C and 57.77 min) showed a significant positive effect compared to conventional methods. The experimental values at this extraction condition show that this optimization model is technologically, financially and energetically viable as it requires a reasonable concentration, time and temperature.
Collapse
Affiliation(s)
- Abdoudramane Sanou
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso.
| | - Kiessoun Konaté
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Applied Sciences and Technologies Training and Research Unit, University of Dedougou, B.P.176, Dedougou, Burkina Faso
| | - Kaboré Kabakdé
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Roger Dakuyo
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - David Bazié
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Sama Hemayoro
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University Joseph KI-ZERBO, 09 P.O. Box 848, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
3
|
Phinyo K, Ruangrit K, Pekkoh J, Tragoolpua Y, Kaewkod T, Duangjan K, Pumas C, Suwannarach N, Kumla J, Pathom-aree W, Gu W, Wang G, Srinuanpan S. Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities. Antioxidants (Basel) 2022; 11:antiox11122437. [PMID: 36552645 PMCID: PMC9774153 DOI: 10.3390/antiox11122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| |
Collapse
|
4
|
Kang JS, Yadav NS. Special Issue Editorial: Isolation and Analysis of Characteristic Compounds from Herbal and Plant Extracts. PLANTS 2021; 10:plants10122775. [PMID: 34961245 PMCID: PMC8709148 DOI: 10.3390/plants10122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Jong-Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-S.K.); (N.S.Y.)
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (J.-S.K.); (N.S.Y.)
| |
Collapse
|