1
|
Xu Y, Weng X, Jiang L, Huang Y, Wu H, Wang K, Li K, Guo X, Zhu G, Zhou G. Screening and Evaluation of Salt-Tolerant Wheat Germplasm Based on the Main Morphological Indices at the Germination and Seedling Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:3201. [PMID: 39599410 PMCID: PMC11598134 DOI: 10.3390/plants13223201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The successful screening and evaluation of salt-tolerant germplasm at the germination and seedling stages is of great importance for promoting the breeding of wheat varieties with salt tolerance. In this study, 70 wheat varieties bred in different regions were evaluated for salt tolerance through hydroponic exposure to different concentrations of salt. The relative water absorption, water absorption rate, dehiscence rate, germination rate, and germination index of seeds, and plant height, root length, stem diameter, and biomass of seedlings were determined at the germination and seedling stages of wheat, and the salt tolerance was identified and evaluated using multivariate statistical analysis. The germination ability and seedling growth potential of wheat germplasms decreased with the aggravation of salt stress. Based on the comprehensive salt tolerance index at the germination stage, our study identified 35 varieties to be salt-tolerant. There were nine varieties further screened for having strong salt tolerance according to the comprehensive salt tolerance index at the germination and seedling stages. SN41, Emam, YN301, and JM262 were superior in salt-tolerance, and YM39, LM30, JM60, YN999, and SD29 were salt-tolerant. Our study suggests that the biomass of seedlings can be used as a key parameter for assessing wheat germplasm's ability to withstand salt. Our results can provide some basic materials for cultivating new germplasm with salt tolerance and excavating the related genes of wheat.
Collapse
Affiliation(s)
- Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Xuelian Weng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Liqiu Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Yu Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Hao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Kangjun Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China;
| | - Ke Li
- Huaiyin Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Huaian 223001, China;
| | - Xiaoqian Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Y.X.); (X.W.); (L.J.); (Y.H.); (H.W.); (X.G.); (G.Z.)
| |
Collapse
|
2
|
Xu S, Zheng J, Du H, Du X, Li C, Duan Y, Cai Y, Wang J, Liu H, Yang L, Xin W, Jia Y, Zou D, Zheng H. GWAS combined with linkage analysis reveals major QTLs and candidate genes of salt tolerance in Japonica rice seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1462856. [PMID: 39554521 PMCID: PMC11563981 DOI: 10.3389/fpls.2024.1462856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
Background Soil salinization is one of the significant factors limiting high crop yields and expansion of arable land, seriously affecting global agricultural production. Rice is an essential food crop throughout the world, and its seedlings are particularly susceptible to salt stress, which can directly affect the growth and development of rice and its final yield. We used the natural population as the material for genome-wide association study (GWAS) and the recombinant inbred line (RIL) population from CD (salt sensitive)/WD20342 (salt tolerant) hybridization as the material for linkage analysis. Results The degree of salt tolerance was evaluated by using the relative root length (RRL), relative root number (RRN), relative root fresh weight (RRFW), and relative root dry weight (RRDW) as indicators. Fifteen and six major quantitative trait loci (QTLs) were identified by GWAS and linkage analysis, respectively. Meanwhile, the GWAS identified the lead SNP (Chr2_22340368), which was located within qRRL2 and qRRDW2 identified by linkage analysis. GWAS, combined with linkage analysis, selected a 196-kb overlapping region on chromosome 2, including 22 candidate genes. LOC_Os02g36880 was discovered as the candidate gene involved in salt tolerance by haplotype analysis, qRT-PCR, and sequence analysis. The score of salinity toxicity (SST) and seedling survival rate (SSR) were determined for CRISPR/Cas9 mutants (CR-1 and CR-15) and wild-type (ZH11), respectively. Conclusion The phenotypic validation indicated that LOC_Os02g36880 negatively regulated the salt tolerance at the seedling stage. This study provides resources for breeding Japonica rice to improve its response to salt stress.
Collapse
Affiliation(s)
- Shanbin Xu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jie Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Haoqiang Du
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaodong Du
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Chong Li
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxuan Duan
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanan Cai
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Li J, Xu L, Xuan P, Tian Z, Liu R. Thiourea and arginine synergistically preserve redox homeostasis and ionic balance for alleviating salinity stress in wheat. Sci Rep 2024; 14:21375. [PMID: 39271951 PMCID: PMC11399406 DOI: 10.1038/s41598-024-72614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Plant growth regulators are cost-effective and efficient methods for enhancing plant defenses under stress conditions. This study investigates the ability of two plant growth-regulating substances, thiourea (TU) and arginine (Arg), to mitigate salinity stress in wheat. The results show that both TU and Arg, particularly when used together, modify plant growth under salinity stress. Their application significantly increases the activities of antioxidant enzymes while decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and relative electrolyte leakage (REL) in wheat seedlings. Additionally, these treatments significantly reduce the concentrations of Na+ and Ca2+ and the Na+/K+ ratio, while significantly increasing K+ levels, thereby preserving ionic osmotic balance. Importantly, TU and Arg markedly enhance the chlorophyll content, net photosynthetic rate, and gas exchange rate in wheat seedlings under salinity stress. The use of TU and Arg, either individually or in combination, results in a 9.03-47.45% increase in dry matter accumulation, with the maximum increase observed when both are used together. Overall, this study highlights that maintaining redox homeostasis and ionic balance are crucial for enhancing plant tolerance to salinity stress. Furthermore, TU and Arg are recommended as potential plant growth regulators to boost wheat productivity under such conditions, especially when applied together.
Collapse
Affiliation(s)
- Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Peng Xuan
- Henan General Chemical Research Institute, Zhengzhou, 450046, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
5
|
Phosuwan S, Nounjan N, Theerakulpisut P, Siangliw M, Charoensawan V. Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1264909. [PMID: 38463565 PMCID: PMC10920293 DOI: 10.3389/fpls.2024.1264909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Soil salinity is a complex abiotic stress that involves several biological pathways. Hence, focusing on a specific or a few salt-tolerant phenotypes is unlikely to provide comprehensive insights into the intricate and interwinding mechanisms that regulate salt responsiveness. In this study, we develop a heuristic framework for systematically integrating and comprehensively evaluating quantitative trait loci (QTL) analyses from multiple stress-related traits obtained by different studies. Making use of a combined set of 46 salinity-related traits from three independent studies that were based on the same chromosome segment substitution line (CSSL) population of rice (Oryza sativa), we demonstrate how our approach can address technical biases and limitations from different QTL studies and calling methods. This allows us to compile a comprehensive list of trait-specific and multi-trait QTLs, as well as salinity-related candidate genes. In doing so, we discover several novel relationships between traits that demonstrate similar trends of phenotype scores across the CSSLs, as well as the similarities between genomic locations that the traits were mapped to. Finally, we experimentally validate our findings by expression analyses and functional validations of several selected candidate genes from multiple pathways in rice and Arabidopsis orthologous genes, including OsKS7 (ENT-KAURENE SYNTHASE 7), OsNUC1 (NUCLEOLIN 1) and OsFRO1 (FERRIC REDUCTASE OXIDASE 1) to name a few. This work not only introduces a novel approach for conducting comparative analyses of multiple QTLs, but also provides a list of candidate genes and testable hypotheses for salinity-related mechanisms across several biological pathways.
Collapse
Affiliation(s)
- Sunadda Phosuwan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Noppawan Nounjan
- Biodiversity and Environmental Management Division, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Han A, Wang C, Li J, Xu L, Guo X, Li W, Zhou F, Liu R. Physiological mechanism of sodium salicylate and folcisteine on alleviating salt stress in wheat seedlings. Sci Rep 2023; 13:22869. [PMID: 38129459 PMCID: PMC10739812 DOI: 10.1038/s41598-023-49629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Soil salinization substantially hampers the growth and development of wheat, potentially leading to plant death in severe cases, thus reducing grain yield and quality. This phenomenon poses a significant threat to food security in China. We investigated the effects of two exogenous plant growth regulators, sodium salicylate and folcisteine, on the wheat physiology and key characteristics under salt stress using hydroponics method. The results indicated that both regulators effectively mitigated the growth inhibition of wheat under salt stress. We assessed morphological and physiological indexes, including antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], peroxidase [POD]) and malondialdehyde (MDA) concentration in wheat after foliar application of sodium salicylate and folcisteine under salt stress. The findings revealed that sodium salicylate was more effective than folcisteine. However, folcisteine showed superior performance in reducing hydrogen peroxide (H2O2) content and superoxide anion (O2-) level compared to sodium salicylate. Simultaneously, Concurrent application of both regulators synergistically enhanced their efficacy, yielding the most favorable outcomes. In addition, this study noted that while the initial effects of these regulators were not pronounced, their sustained application significantly improved wheat growth in stressful condition and alleviated the detrimental impacts of salt stress. This approach could effectively guarantee the food security and production in China.
Collapse
Affiliation(s)
- Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cuiling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Guo
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Kumar R, Sagar V, Verma VC, Kumari M, Gujjar RS, Goswami SK, Kumar Jha S, Pandey H, Dubey AK, Srivastava S, Singh SP, Mall AK, Pathak AD, Singh H, Jha PK, Prasad PVV. Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1225234. [PMID: 37645467 PMCID: PMC10461627 DOI: 10.3389/fpls.2023.1225234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.
Collapse
Affiliation(s)
- Rajeev Kumar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Vidya Sagar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | | | - Mala Kumari
- Integral Institute of Agriculture Science and Technology, Integral University, Lucknow, India
| | - Ranjit Singh Gujjar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sanjay K. Goswami
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sudhir Kumar Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research, Kanpur, India
| | - Himanshu Pandey
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Abhishek Kumar Dubey
- Indian Council of Agricultural Research (ICAR)-Research Complex for Eastern Region, Patna, India
| | - Sangeeta Srivastava
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - S. P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashutosh K. Mall
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashwini Dutt Pathak
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Hemlata Singh
- Department of Botany, Plant Physiology & Biochemistry, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Maniruzzaman S, Rahman MA, Hasan M, Rasul MG, Molla AH, Khatun H, Iftekharuddaula KM, Kabir MS, Akter S. Molecular Mapping to Discover Reliable Salinity-Resilient QTLs from the Novel Landrace Akundi in Two Bi-Parental Populations Using SNP-Based Genome-Wide Analysis in Rice. Int J Mol Sci 2023; 24:11141. [PMID: 37446320 DOI: 10.3390/ijms241311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving high-yield potential is always the ultimate objective of any breeding program. However, various abiotic stresses such as salinity, drought, cold, flood, and heat hampered rice productivity tremendously. Salinity is one of the most important abiotic stresses that adversely affect rice grain yield. The present investigation was undertaken to dissect new genetic loci, which are responsible for salt tolerance at the early seedling stage in rice. A bi-parental mapping population (F2:3) was developed from the cross between BRRI dhan28/Akundi, where BRRI dhan28 (BR28) is a salt-sensitive irrigated (boro) rice mega variety and Akundi is a highly salinity-tolerant Bangladeshi origin indica rice landrace that is utilized as a donor parent. We report reliable and stable QTLs for salt tolerance from a common donor (Akundi) irrespective of two different genetic backgrounds (BRRI dhan49/Akundi and BRRI dhan28/Akundi). A robust 1k-Rice Custom Amplicon (1k-RiCA) SNP marker genotyping platform was used for genome-wide analysis of this bi-parental population. After eliminating markers with high segregation distortion, 886 polymorphic SNPs built a genetic linkage map covering 1526.5 cM of whole rice genome with an average SNP density of 1.72 cM for the 12 genetic linkage groups. A total of 12 QTLs for nine different salt tolerance-related traits were identified using QGene and inclusive composite interval mapping of additive and dominant QTL (ICIM-ADD) under salt stress on seven different chromosomes. All of these 12 new QTLs were found to be unique, as no other map from the previous study has reported these QTLs in the similar chromosomal location and found them different from extensively studied Saltol, SKC1, OsSalT, and salT locus. Twenty-eight significant digenic/epistatic interactions were identified between chromosomal regions linked to or unlinked to QTLs. Akundi acts like a new alternate donor source of salt tolerance except for other usually known donors such as Nona Bokra, Pokkali, Capsule, and Hasawi used in salt tolerance genetic analysis and breeding programs worldwide, including Bangladesh. Integration of the seven novel, reliable, stable, and background independent salinity-resilient QTLs (qSES1, qSL1, qRL1, qSUR1, qSL8, qK8, qK1) reported in this investigation will expedite the cultivar development that is highly tolerant to salt stress.
Collapse
Affiliation(s)
- Sheikh Maniruzzaman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - M Akhlasur Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Mehfuz Hasan
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Golam Rasul
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hasina Khatun
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - K M Iftekharuddaula
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Md Shahjahan Kabir
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Salma Akter
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| |
Collapse
|
9
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Lei L, Cao L, Ding G, Zhou J, Luo Y, Bai L, Xia T, Chen L, Wang J, Liu K, Lei Q, Xie T, Yang G, Wang X, Sun S, Lai Y. OsBBX11 on qSTS4 links to salt tolerance at the seeding stage in Oryza sativa L. ssp. Japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1139961. [PMID: 36968393 PMCID: PMC10030886 DOI: 10.3389/fpls.2023.1139961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Rice has been reported to be highly sensitive to salt stress at the seedling stage. However, the lack of target genes that can be used for improving salt tolerance has resulted in several saline soils unsuitable for cultivation and planting. To characterize new salt-tolerant genes, we used 1,002 F2:3 populations derived from Teng-Xi144 and Long-Dao19 crosses as the phenotypic source to systematically characterize seedlings' survival days and ion concentration under salt stress. Utilizing QTL-seq resequencing technology and a high-density linkage map based on 4,326 SNP markers, we identified qSTS4 as a major QTL influencing seedling salt tolerance, which accounted for 33.14% of the phenotypic variation. Through functional annotation, variation detection and qRT-PCR analysis of genes within 46.9 Kb of qSTS4, it was revealed that there was one SNP in the promoter region of OsBBX11, which resulted in a significant response difference between the two parents to salt stress. Transgenic plants using knockout-based technology and demonstrated that Na+ and K+ in the roots of the functional-loss-type OsBBX11 were translocated largely to the leaves under 120 mmol/L NaCl compared with the wild-type, causing osbbx11 leaves to die after 12 days of salt stress due to an imbalance in osmotic pressure. In conclusion, this study identified OsBBX11 as a salt-tolerance gene, and one SNPs in the OsBBX11 promoter region can be used to identify its interacting transcription factors. This provides a theoretical basis for finding the molecular mechanism of OsBBX11 upstream and downstream regulation of salt tolerance and molecular design breeding in the future.
Collapse
Affiliation(s)
- Lei Lei
- Postdoctoral Scientific Research Station of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
| | - Tianshu Xia
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjun Lei
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tingting Xie
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yongcai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
11
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
12
|
Choudhary P, Muthamilarasan M. Modulating physiological and transcriptional regulatory mechanisms for enhanced climate resilience in cereal crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153815. [PMID: 36150236 DOI: 10.1016/j.jplph.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change adversely affects the yield and productivity of cereal crops, which consequently impacts food security. Therefore, studying stress acclimation, particularly transcriptional patterns and morpho-physiological responses of cereal crops to different stresses, will provide insights into the molecular determinants underlying climate resilience. The availability of advanced tools and approaches has enabled the characterization of plants at morphological, physiological, biochemical, and molecular levels, which will lead to the identification of genomic regions regulating the stress responses at these levels. This will further facilitate using transgenic, breeding, or genome editing approaches to manipulate the identified regions (genes, alleles, or QTLs) to enhance stress resilience. Next-generation sequencing approaches have advanced the identification of causal genes and markers in the genomes through forward or reverse genetics. In this context, the review enumerates the progress of dissecting the molecular mechanisms underlying transcriptional and physiological responses of major cereals to climate-induced stresses. The review systematically discusses different tools and approaches available to study the response of plants to various stresses and identify the molecular determinants regulating stress-resilience. Further, the application of genomics-assisted breeding, transgene-, and targeted editing-based approaches for modulating the genetic determinants for enhanced climate resilience has been elaborated.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
13
|
Ju C, Ma X, Han B, Zhang W, Zhao Z, Geng L, Cui D, Han L. Candidate gene discovery for salt tolerance in rice ( Oryza sativa L.) at the germination stage based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2022; 13:1010654. [PMID: 36388603 PMCID: PMC9664195 DOI: 10.3389/fpls.2022.1010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Salt stress affects rice seed germination and seedling formation, seriously restricting rice production. Screening salt-tolerant rice varieties and analyzing the genetic mechanisms underlying salt tolerance are therefore very important to ensure rice production. In this study, 313 Oryza sativa ssp. japonica germplasm were used to conduct a genome-wide association study (GWAS) using 1% NaCl as a salt stress treatment during germination stage. The germination potential (GP) on different days and the germination index (GI) under salt stress were used as salt tolerance indicators. The results of population structure analysis showed that the 313 germplasm studied could be divided into two subpopulations, consistent with the geographical origins of the materials. There were 52 loci significantly related to salt tolerance during germination, and the phenotypic contribution rate of 29 loci was > 10%. A region on chromosome 11 (17049672-17249672 bp) was repeatedly located, and the candidate gene LOC_Os11g29490, which encodes a plasma membrane ATPase, was identified in this locus. Further haplotype analysis showed the GP of germplasm with different haplotypes at that locus significantly differed under salt stress (p < 0.05), and germplasm carrying Hap2 displayed strong salt tolerance during the germination stage. Two other promising candidate genes for salt tolerance were identified: LOC_Os01g27170 (OsHAK3), which encodes a potassium transporter, and LOC_Os10g42550 (OsITPK5), which encodes an inositol 1, 3, 4-trisphosphate 5/6-kinase. The results of this study provide a theoretical basis for salt-tolerant gene cloning and molecular design breeding in rice.
Collapse
Affiliation(s)
- Chunyan Ju
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Zhengwu Zhao
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Rasheed A, Li H, Nawaz M, Mahmood A, Hassan MU, Shah AN, Hussain F, Azmat S, Gillani SFA, Majeed Y, Qari SH, Wu Z. Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. FRONTIERS IN PLANT SCIENCE 2022; 13:966749. [PMID: 35968147 PMCID: PMC9366114 DOI: 10.3389/fpls.2022.966749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 05/08/2023]
Abstract
Improvement of salinity tolerance in rice can minimize the stress-induced yield losses. Rice (Oryza sativa) is one of Asia's most widely consumed crops, native to the subtropical regions, and is generally associated with sensitivity to salinity stress episodes. Salt-tolerant rice genotypes have been developed using conventional breeding methods; however, the success ratio is limited because of the complex nature of the trait and the high cost of development. The narrow genetic base of rice limited the success of conventional breeding methods. Hence, it is critical to launch the molecular tools for screening rice novel germplasm for salt-tolerant genes. In this regard, the latest molecular techniques like quantitative trait loci (QTL) mapping, genetic engineering (GE), transcription factors (TFs) analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) are reliable for incorporating the salt tolerance in rice at the molecular level. Large-scale use of these potent genetic approaches leads to identifying and editing several genes/alleles, and QTL/genes are accountable for holding the genetic mechanism of salinity tolerance in rice. Continuous breeding practices resulted in a huge decline in rice genetic diversity, which is a great worry for global food security. However, molecular breeding tools are the only way to conserve genetic diversity by exploring wild germplasm for desired genes in salt tolerance breeding programs. In this review, we have compiled the logical evidences of successful applications of potent molecular tools for boosting salinity tolerance in rice, their limitations, and future prospects. This well-organized information would assist future researchers in understanding the genetic improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fiaz Hussain
- Directorate of Agronomy, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Saira Azmat
- Department of Agriculture, Agriculture Extension and Adaptive Research, Government of the Punjab, Lahore, Pakistan
| | | | - Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Li C, Lu C, Zou B, Yang M, Wu G, Wang P, Cheng Q, Wang Y, Zhong Q, Huang S, Huang T, He H, Bian J. Genome-Wide Association Study Reveals a Genetic Mechanism of Salt Tolerance Germinability in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:934515. [PMID: 35909718 PMCID: PMC9335074 DOI: 10.3389/fpls.2022.934515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the factors that limits rice production, and an important task for researchers is to cultivate rice with strong salt tolerance. In this study, 211 rice accessions were used to determine salt tolerance germinability (STG) indices and conduct a genome-wide association study (GWAS) using 36,727 SNPs. The relative germination energy (RGE), relative germination index (RGI), relative vigor index (RVI), relative mean germination time (RMGT), relative shoot length (RSL), and relative root length (RRL) were used to determine the STG indices in rice. A total of 43 QTLs, including 15 for the RGE, 6 for the RGI, 7 for the RVI, 3 for the RMGT, 1 for the RSL, and 11 for the RRL, were identified on nine chromosome regions under 60 and 100 mM NaCl conditions. For these STG-related QTLs, 18 QTLs were co-localized with previous studies, and some characterized salt-tolerance genes, such as OsCOIN, OsHsp17.0, and OsDREB2A, are located in these QTL candidates. Among the 25 novel QTLs, qRGE60-1-2 co-localized with qRGI60-1-1 on chromosome 1, and qRGE60-3-1 and qRVI60-3-1 co-localized on chromosome 3. According to the RNA-seq database, 16 genes, including nine for qRGE60-1-2 (qRGI60-1-1) and seven for qRGE60-3-1 (qRVI60-3-1), were found to show significant differences in their expression levels between the control and salt treatments. Furthermore, the expression patterns of these differentially expressed genes were analyzed, and nine genes (five for qRGE60-1-2 and four for qRGE60-3-1) were highly expressed in embryos at the germination stage. Haplotype analysis of these nine genes showed that the rice varieties with elite haplotypes in the LOC_Os03g13560, LOC_Os03g13840, and LOC_Os03g14180 genes had high STG. GWAS validated the known genes underlying salt tolerance and identified novel loci that could enrich the current gene pool related to salt tolerance. The resources with high STG and significant loci identified in this study are potentially useful in breeding for salt tolerance.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Changsheng Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Baoli Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| |
Collapse
|
16
|
Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. PLANTS 2022; 11:plants11111409. [PMID: 35684182 PMCID: PMC9183132 DOI: 10.3390/plants11111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Rice is the world’s most important food crop, providing the daily calorie intake for more than half of the world’s population. Rice breeding has always been preoccupied with maximizing yield potential. However, numerous abiotic factors, such as salt, cold, drought, and heat, significantly reduce rice productivity. Salinity, one of the major abiotic stresses, reduces rice yield worldwide. This study was conducted to determine new quantitative trait loci (QTLs) that regulate salt tolerance in rice seedlings. One F2:3 mapping population was derived from a cross between BRRI dhan49 (a popular but sensitive rainfed rice variety) and Akundi (a salt-tolerant rice landrace in Bangladesh used as a donor parent). The 1k-Rice Custom Amplicon (1k-RiCA) single-nucleotide polymorphism (SNP) markers were used to genotype this mapping population. After removing segregation distortion and monomorphic markers, 884 SNPs generated a 1526.8 cM-long genetic linkage map with a mean marker density of 1.7 cM for the 12 linkage groups. By exploiting QGene and ICIM-ADD, a sum of 15 QTLs for nine traits was identified in salt stress on seven chromosomes. Four important genomic loci were identified (qSES1, qSL1, qSUR1 and qRL1) on chromosome 1. Out of these 15 QTLs, 14 QTLs are unique, as no other study has mapped in the same chromosomal location. We also detected 15 putative candidate genes and their functions. The ICIM-EPI approach identified 43 significant pairwise epistasis interactions between regions associated with and unassociated with QTLs. Apart from more well-known donors, Akundi serves as an important new donor source for global salt tolerance breeding initiatives, including Bangladesh. The introgression of the novel QTLs identified in this study will accelerate the development of new salt-tolerant varieties that are highly resistant to salt stress using marker-enabled breeding.
Collapse
|
17
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|