1
|
Wang X, Wang Y, Sun Y, Wang K, Yang J, Zeng D, Mo L, Liao J, Peng Q, Yao Y, Pu G. Soil polluted system shapes endophytic fungi communities associated with Arundo donax: a field experiment. PeerJ 2025; 13:e18789. [PMID: 39807158 PMCID: PMC11727649 DOI: 10.7717/peerj.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. Arundo donax is one of the few plants capable of surviving in RM-affected soils. To identify endophytic fungi that support A. donax in different contaminated environments and to inform future research combining mycorrhizal techniques with hyperaccumulator plants, we conducted a field experiment. The study compared endophytic fungal communities in A. donax grown in uncontaminated, MP soils contaminated with cadmium (Cd), arsenic (As), and lead (Pb), and RM-contaminated soils. Our findings showed that soil nutrient profiles differed by contamination type, with Cd concentrations in MP soils exceeding national pollution standards (GB 15168-2018) and RM soils characterized by high aluminum (Al), iron (Fe), and alkalinity. There were significant differences in the endophytic fungal community structures across the three soil types (p < 0.001). Co-occurrence network analysis revealed that endophytic fungi in MP soils exhibited competitive niche dynamics, whereas fungi in RM soils tended to share niches. Notably, Pleosporales sp., which accounted for 18% of the relative abundance in RM soils, was identified as a dominant and beneficial endophyte, making it a promising candidate for future bioremediation efforts. This study provides valuable insights into the role of endophytic fungi in phytoremediation and highlights their potential as resources for improving plant-microbe interactions in contaminated environments.
Collapse
Affiliation(s)
- Xiaohui Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yao Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yingqiang Sun
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Keyi Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Junbo Yang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Danjuan Zeng
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Ling Mo
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Jianxiong Liao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Qianshu Peng
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yu Yao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Gaozhong Pu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
2
|
Mwangi NG, Stevens M, Wright AJD, Edwards SG, Hare MC, Back MA. Grass-Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes. Toxins (Basel) 2024; 16:274. [PMID: 38922168 PMCID: PMC11209465 DOI: 10.3390/toxins16060274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Claviceptaceous endophytic fungi in the genus Epichloë mostly form a symbiotic relationship with cool-season grasses. Epichloë spp. are capable of producing bioactive alkaloids such as peramines, lolines, ergot alkaloids, and indole-diterpenes, which protect the host plant from herbivory by animals, insects, and nematodes. The host also benefits from enhanced tolerance to abiotic stresses, such as salt, drought, waterlogging, cold, heavy metals, and low nitrogen stress. The bioactive alkaloids produced can have both direct and indirect effects towards plant parasitic nematodes. Direct interaction with nematodes' motile stages can cause paralysis (nematostatic effect) or death (nematicidal effect). Indirectly, the metabolites may induce host immunity which inhibits feeding and subsequent nematode development. This review highlights the different mechanisms through which this interaction and the metabolites produced have been explored in the suppression of plant parasitic nematodes and also how the specific interactions between different grass genotypes and endophyte strains result in variable suppression of different nematode species. An understanding of the different grass-endophyte interactions and their successes and failures in suppressing various nematode species is essential to enable the proper selection of grass-endophyte combinations to identify the alkaloids produced, concentrations required, and determine which nematodes are sensitive to which specific alkaloids.
Collapse
Affiliation(s)
- Nyambura G. Mwangi
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, UK; (S.G.E.); (M.C.H.); (M.A.B.)
| | - Mark Stevens
- British Beet Research Organisation, Centrum, Norwich Research Park, Colney Lane, Norwich NR4 7UG, UK; (M.S.); (A.J.D.W.)
| | - Alistair J. D. Wright
- British Beet Research Organisation, Centrum, Norwich Research Park, Colney Lane, Norwich NR4 7UG, UK; (M.S.); (A.J.D.W.)
| | - Simon G. Edwards
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, UK; (S.G.E.); (M.C.H.); (M.A.B.)
| | - Martin C. Hare
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, UK; (S.G.E.); (M.C.H.); (M.A.B.)
| | - Matthew A. Back
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, UK; (S.G.E.); (M.C.H.); (M.A.B.)
| |
Collapse
|
3
|
Zhai Y, Chen Z, Malik K, Wei X, Li C, Chen T. Regulation of mineral elements in Hordeum brevisubulatum by Epichloë bromicola under Cd stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1253-1268. [PMID: 38305734 DOI: 10.1080/15226514.2024.2307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In this study, wild barley (Hordeum brevisubulatum) infected (E+) and uninfected (E-) by Epichloë bromicola were used for hydroponic experiments during the seedling stage. Various attributes, such as the effect of fungal endophyte on the growth and development of wild barley, the absorption of cadmium (Cd) and mineral elements (Ca, Mg, Fe, Mn, Cu, Zn), subcellular distribution, and chemical forms were investigated under CdCl2 stress. The results showed that the fungal endophy significantly reduced the Ca content and percentage of plant roots under Cd stress. The Fe and Mn content of roots, the mineral element content of soluble fractions, and the stems in the pectin acid or protein-chelated state increased significantly in response to fungal endophy. Epichloë endophyte helped Cd2+ to enter into plants; and reduced the positive correlation of Ca-Fe and Ca-Mn in roots. In addition, it also decreased the correlation of soluble components Cd-Cu, Cd-Ca, Cd-Mg in roots, and the negative correlation between pectin acid or protein-chelated Cd in stems and mineral elements, to increase the absorbance of host for mineral elements. In conclusion, fungal endophy regulated the concentration and distribution of mineral elements, while storing more Cd2+ to resist the damage caused by Cd stress. The study could provide a ground for revealing the Cd tolerance mechanism of endophytic fungal symbionts.
Collapse
Affiliation(s)
- Yurun Zhai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuekai Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Taixiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation (Ministry of Agriculture and Rural Affairs), Engineering Research Center of Grassland Industry (Ministry of Education), Gansu Tech Innovation Centre of Western China Grassland Industry, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Wang C, Shi C, Huang W, Zhang M, He J. The Impact of Aboveground Epichloë Endophytic Fungi on the Rhizosphere Microbial Functions of the Host Melica transsilvanica. Microorganisms 2024; 12:956. [PMID: 38792786 PMCID: PMC11124418 DOI: 10.3390/microorganisms12050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In nature, the symbiotic relationship between plants and microorganisms is crucial for ecosystem balance and plant growth. This study investigates the impact of Epichloë endophytic fungi, which are exclusively present aboveground, on the rhizosphere microbial functions of the host Melica transsilvanica. Using metagenomic methods, we analyzed the differences in microbial functional groups and functional genes in the rhizosphere soil between symbiotic (EI) and non-symbiotic (EF) plants. The results reveal that the presence of Epichloë altered the community structure of carbon and nitrogen cycling-related microbial populations in the host's rhizosphere, significantly increasing the abundance of the genes (porA, porG, IDH1) involved in the rTCA cycle of the carbon fixation pathway, as well as the abundance of nxrAB genes related to nitrification in the nitrogen-cycling pathway. Furthermore, the presence of Epichloë reduces the enrichment of virulence factors in the host rhizosphere microbiome, while significantly increasing the accumulation of resistance genes against heavy metals such as Zn, Sb, and Pb. This study provides new insights into the interactions among endophytic fungi, host plants, and rhizosphere microorganisms, and offers potential applications for utilizing endophytic fungi resources to improve plant growth and soil health.
Collapse
Affiliation(s)
| | - Chong Shi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (C.W.); (W.H.); (M.Z.); (J.H.)
| | | | | | | |
Collapse
|
5
|
Maslennikova D, Koryakov I, Yuldashev R, Avtushenko I, Yakupova A, Lastochkina O. Endophytic Plant Growth-Promoting Bacterium Bacillus subtilis Reduces the Toxic Effect of Cadmium on Wheat Plants. Microorganisms 2023; 11:1653. [PMID: 37512826 PMCID: PMC10386265 DOI: 10.3390/microorganisms11071653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Heavy metal ions, in particular cadmium (Cd), have a negative impact on the growth and productivity of major crops, including wheat. The use of environmentally friendly approaches, in particular, bacteria that have a growth-stimulating and protective effect, can increase the resistance of plants. The effects of the pre-sowing seed treatment with the plant growth-promoting endophyte Bacillus subtilis 10-4 (BS) on cadmium acetate (Cd)-stressed Triticum aestivum L. (wheat) growth, photosynthetic pigments, oxidative stress parameters, roots' lignin content, and Cd ions accumulation in plants were analyzed. The results showed that the tested Cd-tolerant BS improved the ability of wheat seeds to germinate in the presence of different Cd concentrations (0, 0.1, 0.5, and 1 mM). In addition, the bacterial treatment significantly decreased the damaging effects of Cd stress (1 mM) on seedlings' linear dimensions (lengths of roots and shoots), biomass, as well as on the integrity and permeability of the cell walls (i.e., lipid peroxidation and electrolyte leakage) and resulted in reduced H2O2 generation. The pretreatment with BS prevented the Cd-induced degradation of the leaf photosynthetic pigments chlorophyll (Chl) a, Chl b, and carotenoids. Moreover, the bacterial treatment intensified the lignin deposition in the roots under normal and, especially, Cd stress conditions, thereby enhancing the barrier properties of the cell wall. This manifested in a reduced Cd ions accumulation in the roots and in the restriction of its translocation to the aboveground parts (shoots) of the bacterized plants under Cd stress in comparison with non-bacterized controls. Thus, the pre-sowing seed treatment with the endophyte BS may serve as an eco-friendly approach to improve wheat production in Cd-contaminated areas.
Collapse
Affiliation(s)
| | - Igor Koryakov
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
| | - Irina Avtushenko
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia
| | - Albina Yakupova
- Institute of Biochemistry and Genetics UFRC RAS, Ufa 450054, Russia
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia
| | | |
Collapse
|
6
|
Tiwari P, Bae H. Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:1515. [PMID: 37050141 PMCID: PMC10097340 DOI: 10.3390/plants12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Plant microbiomes represent dynamic entities, influenced by the environmental stimuli and stresses in the surrounding conditions. Studies have suggested the benefits of commensal microbes in improving the overall fitness of plants, besides beneficial effects on plant adaptability and survival in challenging environmental conditions. The concept of 'Defense biome' has been proposed to include the plant-associated microbes that increase in response to plant stress and which need to be further explored for their role in plant fitness. Plant-associated endophytes are the emerging candidates, playing a pivotal role in plant growth, adaptability to challenging environmental conditions, and productivity, as well as showing tolerance to biotic and abiotic stresses. In this article, efforts have been made to discuss and understand the implications of stress-induced changes in plant endophytic microbiome, providing key insights into the effects of heavy metals on plant endophytic dynamics and how these beneficial microbes provide a prospective solution in the tolerance and mitigation of heavy metal in contaminated sites.
Collapse
|
7
|
Rahnama M, Maclean P, Fleetwood DJ, Johnson RD. Comparative Transcriptomics Profiling of Perennial Ryegrass Infected with Wild Type or a Δ velA Epichloë festucae Mutant Reveals Host Processes Underlying Mutualistic versus Antagonistic Interactions. J Fungi (Basel) 2023; 9:jof9020190. [PMID: 36836305 PMCID: PMC9959145 DOI: 10.3390/jof9020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 02/05/2023] Open
Abstract
Epichloë species form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. VelA is a key global regulator in fungal secondary metabolism and development. In previous studies, we showed the requirement of velA for E. festucae to form a mutualistic interaction with Lolium perenne. We showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with several small-secreted proteins in Epichloë festucae. Here, by a comparative transcriptomics analysis on perennial ryegrass seedlings and mature plants, which are endophyte free or infected with wild type (mutualistic interaction) or mutant ΔvelA E. festucae (antagonistic or incompatible interaction), regulatory effects of the endophytic interaction on perennial ryegrass development was studied. We show that ΔvelA mutant associations influence the expression of genes involved in primary metabolism, secondary metabolism, and response to biotic and abiotic stresses compared with wild type associations, providing an insight into processes defining mutualistic versus antagonistic interactions.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Biology, Tennessee Tech University, Cookeville, TN 38505, USA
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Richard D. Johnson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| |
Collapse
|
8
|
Identification of Three Epichloë Endophytes from Hordeum bogdanii Wilensky in China. J Fungi (Basel) 2022; 8:jof8090928. [PMID: 36135653 PMCID: PMC9502125 DOI: 10.3390/jof8090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Cool season grasses often form reciprocal symbiotic relationships with endophytic fungal species in genus Epichloë. In this study, we characterized three fungal endophytes isolated from the grass Hordeum bogdanii native to northwest China. Based on morphological characteristics and phylogenetic analyses of tefA, tubB, and actG sequences, we identified them as Epichloë sp. HboTG-2 (H. bogdanii Taxonomic Group 2: E. bromicola × E. typhina). Alkaloid synthesis related genes analysis showed that Epichloë sp. HboTG-2 may have the ability only to produce peramine which is toxic to insects but not to animals. In the process of this study, we did not observe sexual structures or epiphyllous growth on leaves of infected plants.
Collapse
|
9
|
Nagabhyru P, Dinkins RD, Schardl CL. Transcriptome analysis of Epichloë strains in tall fescue in response to drought stress. Mycologia 2022; 114:697-712. [PMID: 35671366 DOI: 10.1080/00275514.2022.2060008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epichloë coenophiala, a systemic fungal symbiont (endophyte) of tall fescue (Lolium arundinaceum), has been documented to confer to this grass better persistence than plants lacking the endophyte, especially under stress conditions such as drought. The response, if any, of the endophyte to imposition of stress on the host plant has not been characterized previously. Therefore, we investigated effects on gene expression by E. coenophiala and a related endophyte when plant-endophyte symbiota were subjected to acute water-deficit stress. Plants harboring different endophyte strains were grown in sand in the greenhouse, then half were deprived of water for 48 h and the other half were watered controls. RNA was isolated from different plant tissues, and mRNA sequencing (RNA-seq) was conducted to identify genes that were differentially expressed comparing stress treatment with control. We compared two different plants harboring the common toxic E. coenophiala strain (CTE) and two non-ergot-alkaloid-producing Epichloë strains in tall fescue pseudostems, and in a second experiment we compared responses of E. coenophiala CTE in plant pseudostem and crown tissues. The endophytes responded to the stress with increased expression of genes involved in oxidative stress response, oxygen radical detoxification, C-compound carbohydrate metabolism, heat shock, and cellular transport pathways. The magnitude of fungal gene responses during stress varied among plant-endophyte symbiota. Responses in pseudostems and crowns involved some common pathways as well as some tissue-specific pathways. The fungal response to water-deficit stress involved gene expression changes in similar pathways that have been documented for plant stress responses, indicating that Epichloë spp. and their host plants either coordinate stress responses or separately activate similar stress response mechanisms that work together for mutual protection.
Collapse
Affiliation(s)
- Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Randy D Dinkins
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, Kentucky 40546
| | | |
Collapse
|
10
|
Abstract
Wastelands of the mining industry are among the largest of disturbed areas that demand revitalization. To reduce environmental impact and to better manage these geo-resources, the formation of sustainable plant and soil complexes and the restoration of self-recovery soil function are critical points. The successful return of vegetative cover at post-mining sites requires eliminating the deficiency of organic matter. For this, we assessed the usability of non-traditional ameliorants to provide a better understanding of benefits from mutual dependencies of environmental resources. To prevent losses and to close resource cycles, we studied the applicability of wastewater sludge from the pulp and paper (SPP) industry as an amendment to counteract soil degradation and rehabilitate human-disturbed lands. Waste rock limestone, beresite, and phosphogypsum substrates of post-mining sites were used in vitro for the application of sludge and peat mixture and consequent grass seeding. The formed vegetative cover was analyzed to compare the germination and biomass growth on reconstructed soils. We assessed the efficiency of ameliorant combinations by two approaches: (1) the traditional technique of cutting-off plant material to measure the obtained plant biomass, and, (2) digital image analysis for RGB-processed photographs of the vegetative cover (r2 = 0.75–0.95). The effect of SPP on plant cover biomass and grass height showed similar results: land rehabilitation with the formation of a 20 cm soil layer on mine waste dumps was environmentally suitable with an SPP:soil ratio of 1:3. However, excessive application (ratio 1:1 of SPP to the soil) negatively affected seed germination and plant vegetation.
Collapse
|