1
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Das D, Chowdhury N, Sharma M, Suma R, Saikia B, Velmurugan N, Chikkaputtaiah C. Screening for brown-spot disease and drought stress response and identification of dual-stress responsive genes in rice cultivars of Northeast India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:647-663. [PMID: 38737323 PMCID: PMC11087401 DOI: 10.1007/s12298-024-01447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01447-4.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Remya Suma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Pavese V, Moglia A, Milani AM, Marino LA, Martinez MT, Torello Marinoni D, Botta R, Corredoira E. Advances in Quercus ilex L. breeding: the CRISPR/Cas9 technology via ribonucleoproteins. FRONTIERS IN PLANT SCIENCE 2024; 15:1323390. [PMID: 38439988 PMCID: PMC10910054 DOI: 10.3389/fpls.2024.1323390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
The CRISPR/Cas9 ribonucleoprotein (RNP)-mediated technology represents a fascinating tool for modifying gene expression or mutagenesis as this system allows for obtaining transgene-free plants, avoiding exogenous DNA integration. Holm oak (Quercus ilex) has an important social, economic, and ecological role in the Mediterranean climate zones of Western Europe and North Africa and is severely affected by oak decline syndrome. Here we report the first example of the application of the CRISPR/Cas9-RNP technology in holm oak. Firstly, we evaluated the protoplast isolation from both in vitro leaves and proembryogenic masses. Proembryogenic masses represented the best material to get high protoplast yield (11 x 106 protoplasts/ml) and viability. Secondly, the protoplast transfection ability was evaluated through a vector expressing green fluorescence protein as marker gene of transfection, reaching a transfection percentage of 62% after 24 hours. CRISPR/Cas9 RNPs were successfully delivered into protoplasts resulting in 5.6% ± 0.5% editing efficiency at phytoene desaturase (pds) target genomic region. Protoplasts were then cultured in semisolid media and, after 45 days in culture, developed embryogenic calli were observed in a Murashige and Skoog media with half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg/L benzylaminopurine and 0.1 mg/L 2,4-dichlorophenoxyacetic acid.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Anna Maria Milani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Lorenzo Antonio Marino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Maria Teresa Martinez
- Mision Biologica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Cientificas, Santiago de Compostela, Spain
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Elena Corredoira
- Mision Biologica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Cientificas, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Prajapati A, Nain V, Singh D. Designed gRNAs for CRISPR-Cas9 based antifungal resistance in eggplant. Bioinformation 2023; 19:844-848. [PMID: 37908609 PMCID: PMC10613811 DOI: 10.6026/97320630019844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 11/02/2023] Open
Abstract
Eggplant is an important vegetable crop and is a good source of antioxidants, minerals, and vitamins. It has been used in ancient medicines for the treatment of multiple diseases. However, the cultivated varieties of eggplant are susceptible to numerous pathogens and pests that have a negative impact on vegetable crops. Increased resistance achieved through resistance genes (R genes) is limited in eggplant breeding due to the fact that R genes are typically specific to a pathogen race and can be quickly surpassed by pathogen evolution. The susceptibility genes (S genes) in plants facilitate pathogen entry and proliferation, thus disabling these genes might be beneficial for providing a broad range and durable resistance against pathogens. Reports on crops such as Arabidopsis, rice, wheat, citrus, and tomatoes have highlighted that the knockout mutants of the S genes are tolerant to multiple different pathogens. The CRISPR/Cas9 system facilitates plant genome editing that can be utilized efficiently for crop improvement. In the current work, we have identified the homologs of candidate S genes DMR1, DMR6, EDR1, and PMR4/5/6 in the eggplant genome and designed and screened putative gRNAs against the identified target loci. The gRNAs were screened and selected on the basis of recognition of the PAM sequence, the MIT score, their minimum free energy, and the secondary structure. Five gRNAs for each gene homolog were selected after an in-depth analysis of all the predicted gRNAs using the above-mentioned criterion.
Collapse
Affiliation(s)
- Archana Prajapati
- />School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India
| | - Vikrant Nain
- />School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India
| | - Deepali Singh
- />School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India
| |
Collapse
|
5
|
Laura M, Forti C, Barberini S, Ciorba R, Mascarello C, Giovannini A, Pistelli L, Pieracci Y, Lanteri AP, Ronca A, Minuto A, Ruffoni B, Cardi T, Savona M. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum 'FT Italiko' to Induce Resistance to Peronospora belbahrii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2395. [PMID: 37446956 DOI: 10.3390/plants12132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Ocimum basilicum (sweet basil) is an economically important aromatic herb; in Italy, approximately 1000 ha of "Genovese-type" basil are grown annually in greenhouses and open fields and are subjected to Downy Mildew (DM) disease, caused by Peronospora belbahrii, leading to huge crop losses. Mutation of the Susceptibility (S) gene DMR6 (Downy Mildew Resistant 6) has been proven to confer a broad-spectrum resistance to DM. In this work, an effective Genome Editing (GE) approach mediated by CRISPR/Cas9 in O. basilicum 'Italiko', the élite cultivar used to produce "Pesto Genovese D.O.P", was developed. A highly efficient genetic transformation method mediated by A. tumefaciens has been optimized from cotyledonary nodes, obtaining 82.2% of regenerated shoots, 84.6% of which resulted in Cas9+ plants. Eleven T0 lines presented different type of mutations in ObDMR6; 60% were indel frameshift mutations with knock-out of ObDMR6 of 'FT Italiko'. Analysis of six T1 transgene-free seedlings revealed that the mutations of T0 plants were inherited and segregated. Based on infection trials conducted on T0 plants, clone 22B showed a very low percentage of disease incidence after 14 days post infection. The aromatic profile of all in vitro edited plants was also reported; all of them showed oxygenated monoterpenes as the major fraction.
Collapse
Affiliation(s)
- Marina Laura
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Chiara Forti
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, Via Bassini 12, 20133 Milano, Italy
| | - Sara Barberini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IPSP, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Ciorba
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Carlo Mascarello
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Annalisa Giovannini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Paola Lanteri
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Agostina Ronca
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Andrea Minuto
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Barbara Ruffoni
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBR, Institute of Biosciences and Bioresources, 80055 Portici, Italy
| | - Marco Savona
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| |
Collapse
|
6
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Nerva L, Dalla Costa L, Ciacciulli A, Sabbadini S, Pavese V, Dondini L, Vendramin E, Caboni E, Perrone I, Moglia A, Zenoni S, Michelotti V, Micali S, La Malfa S, Gentile A, Tartarini S, Mezzetti B, Botta R, Verde I, Velasco R, Malnoy MA, Licciardello C. The Role of Italy in the Use of Advanced Plant Genomic Techniques on Fruit Trees: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:977. [PMID: 36674493 PMCID: PMC9861864 DOI: 10.3390/ijms24020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.
Collapse
Affiliation(s)
- Luca Nerva
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Angelo Ciacciulli
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Vera Pavese
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Luca Dondini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisa Vendramin
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Emilia Caboni
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Vania Michelotti
- Research Center for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola D’Arda, Italy
| | - Sabrina Micali
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Stefano La Malfa
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Alessandra Gentile
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Ignazio Verde
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Riccardo Velasco
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
| | - Mickael Arnaud Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| |
Collapse
|
8
|
Pavese V, Ruffa P, Abbà S, Costa RL, Corredoira E, Silvestri C, Torello Marinoni D, Botta R. An In Vitro Protocol for Propagating Castanea sativa Italian Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:3308. [PMID: 36501347 PMCID: PMC9738486 DOI: 10.3390/plants11233308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Castanea sativa cv. 'Garrone Rosso' and 'Marrone di Castel del Rio' are two of the most prized varieties in Italy due to their valuable and healthy nuts used for fresh consumption and in the confectionery industry. Despite the growing demand for chestnuts, there are constraints regarding plant propagation that hamper the renewal and new planting of orchards in different areas. Castanea sativa is susceptible to diseases that have caused a reduction in its area of production. For this reason, in vitro culture represents a valuable technique for germplasm preservation and plant multiplication enabling production of a high number of plants for use in breeding programs. Here we present an in vitro micropropagation protocol for Italian Castanea sativa cv. 'Marrone di Castel del Rio' and cv. 'Garrone Rosso' to contribute to the preservation and enhancement of the Italian germplasm. Nodal explants were used as the starting material for in vitro establishment. The cv. 'Marrone di Castel del Rio' showed a high percentage of survival explants (92%) when subjected to long bleach exposure (25 min), in contrast to what was observed for the 'Garrone Rosso' cultivar. Ascorbic acid was found to be the best compound to counteract phenol exudation. The MS3B and DKW media supplied with 0.5 mg/L BAP were effective for in vitro establishment, while the DKW medium (0.1 mg/L BAP and 0.05 mg/L IBA) was preferable for the proliferation phase. A double-layer rooting methodology was used and 35% rooting was observed with 25 mg/L IBA rooting treatment.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paola Ruffa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Silvia Abbà
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Avenida da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Elena Corredoira
- Misión Biológica de Galicia, Sede de Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Avd. Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| |
Collapse
|
9
|
Fernandes P, Colavolpe MB, Serrazina S, Costa RL. European and American chestnuts: An overview of the main threats and control efforts. FRONTIERS IN PLANT SCIENCE 2022; 13:951844. [PMID: 36092400 PMCID: PMC9449730 DOI: 10.3389/fpls.2022.951844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chestnuts are multipurpose trees significant for the economy and wildlife. These trees are currently found around the globe, demonstrating their genetic adaptation to different environmental conditions. Several biotic and abiotic stresses have challenged these species, contributing to the decline of European chestnut production and the functional extinction of the American chestnut. Several efforts started over the last century to understand the cellular, molecular, and genetic interactions behind all chestnut biotic and abiotic interactions. Most efforts have been toward breeding for the primary diseases, chestnut blight and ink disease caused by the pathogens, Cryphonectria parasitica and Phytophthora cinnamomi, respectively. In Europe and North America, researchers have been using the Asian chestnut species, which co-evolved with the pathogens, to introgress resistance genes into the susceptible species. Breeding woody trees has several limitations which can be mostly related to the long life cycles of these species and the big genome landscapes. Consequently, it takes decades to improve traits of interest, such as resistance to pathogens. Currently, the availability of genome sequences and next-generation sequencing techniques may provide new tools to help overcome most of the problems tree breeding is still facing. This review summarizes European and American chestnut's main biotic stresses and discusses breeding and biotechnological efforts developed over the last decades, having ink disease and chestnut blight as the main focus. Climate change is a rising concern, and in this context, the adaptation of chestnuts to adverse environmental conditions is of extreme importance for chestnut production. Therefore, we also discuss the abiotic challenges on European chestnuts, where the response to abiotic stress at the genetic and molecular level has been explored.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Green-It Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | | | - Susana Serrazina
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Wang Y, Liu C, Fang Z, Wu Q, Xu Y, Gong B, Jiang X, Lai J, Fan J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2022; 11:2111. [PMID: 36015414 PMCID: PMC9416426 DOI: 10.3390/plants11162111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Chestnut (Castanea spp., Fagaceae family) is an economically and ecologically valuable species. The main goals of chestnut production vary among species and countries and depend on the ecological characteristics of orchards, agronomic management, and the architecture of chestnut trees. Here, we review recent research on chestnut trees, including the effects of fungal diseases (Cryphonectria parasitica and Phytophthora cinnamomi) and insect pests (Dryocosmus kuriphilus Yasumatsu), molecular markers for breeding, ecological effects, endophytic fungi, and extracts with human health benefits. We also review research on chestnut in the food science field, technological improvements, the soil and fertilizer used for chestnut production, and the postharvest biology of chestnut. We noted differences in the factors affecting chestnut production among regions, including China, the Americas, and Europe, especially in the causal agents of disease and pests. For example, there is a major difference in the resistance of chestnut to C. parasitica in Asian, European, and American countries. Our review provides new insights into the integrated disease and pest management of chestnut trees in China. We hope that this review will foster collaboration among regions and help to clarify differences in the direction of breeding efforts among countries.
Collapse
Affiliation(s)
- Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Cuiyu Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhou Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiang Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xibing Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Junsheng Lai
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Jingen Fan
- Lanxi City Nursery of Zhejiang Provence, Lanxi 321100, China
| |
Collapse
|
11
|
Pavese V, Moglia A, Abbà S, Milani AM, Torello Marinoni D, Corredoira E, Martínez MT, Botta R. First Report on Genome Editing via Ribonucleoprotein (RNP) in Castanea sativa Mill. Int J Mol Sci 2022; 23:5762. [PMID: 35628572 PMCID: PMC9145500 DOI: 10.3390/ijms23105762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new plant breeding techniques (NPBTs), the CRISPR/Cas9 system represents a powerful tool to improve plant breeding in a short time and inexpensive way. In addition, the CRISPR/Cas9 construct can be delivered into the cells in the form of ribonucleoproteins (RNPs), avoiding the integration of exogenous DNA (GMO-free) through protoplast technology that represents an interesting material for gene editing thanks to the highly permeable membrane to DNA. In the present study, we developed the first protoplast isolation protocol starting from European chestnut somatic embryos. The enzyme solution optimized for cell wall digestion contained 1% cellulase Onozuka R-10 and 0.5% macerozyme R-10. After incubation for 4 h at 25 °C in dark conditions, a yield of 4,500,000 protoplasts/mL was obtained (91% viable). The transfection capacity was evaluated using the GFP marker gene, and the percentage of transfected protoplasts was 51%, 72 h after the transfection event. The direct delivery of the purified RNP was then performed targeting the phytoene desaturase gene. Results revealed the expected target modification by the CRISPR/Cas9 RNP and the efficient protoplast editing.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| | - Silvia Abbà
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| | - Anna Maria Milani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| | - Elena Corredoira
- Misión Biológica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Científicas, Avd. Vigo, s/n, 15705 Santiago de Compostela, Spain; (E.C.); (M.T.M.)
| | - Maria Teresa Martínez
- Misión Biológica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Científicas, Avd. Vigo, s/n, 15705 Santiago de Compostela, Spain; (E.C.); (M.T.M.)
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy; (V.P.); (S.A.); (A.M.M.); (D.T.M.); (R.B.)
| |
Collapse
|
12
|
Pavese V, Moglia A, Corredoira E, Martínez MT, Torello Marinoni D, Botta R. First Report of CRISPR/Cas9 Gene Editing in Castanea sativa Mill. FRONTIERS IN PLANT SCIENCE 2021; 12:728516. [PMID: 34512704 PMCID: PMC8424114 DOI: 10.3389/fpls.2021.728516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Elena Corredoira
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG)-Consejo Superior de Investigaciones Científicas, Santiago de Compostela, Spain
| | - Mª Teresa Martínez
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG)-Consejo Superior de Investigaciones Científicas, Santiago de Compostela, Spain
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|