1
|
Pang B, Zuo D, Yang T, Yu J, Zhou L, Hou Y, Yu J, Ye L, Gu L, Wang H, Du X, Liu Y, Zhu B. BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108299. [PMID: 38150840 DOI: 10.1016/j.plaphy.2023.108299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Cadmium (Cd), which is a nonessential heavy metal element for organisms, can have a severe impact on the growth and development of organisms that absorb excessive Cd. Studies have shown that Brassica carinata, a semiwild oil crop, has strong tolerance to various abiotic stresses, and RNA-seq has revealed that the B. carinata superoxide dismutase gene (BcaSOD1) likely responds to Cd stress. To elucidate the BcaSOD1 function involved in tolerance of Cd stress, we cloned the coding sequences of BcaSOD1 from a purple B. carinata accession and successfully transferred it into Arabidopsis thaliana. The subcellular localization results demonstrated that BcaSOD1 was primarily located in the plasma membrane, mitochondria and nucleus. Overexpression of BcaSOD1 in transgenic Arabidopsis (OE) effectively decreased the toxicity caused by Cd stress. Compared to the WT (wild type lines), the OE lines exhibited significantly increased activities of antioxidant enzymes (APX, CAT, POD, and SOD) after exposure to 2.5 mM CdCl2. The Cd content of underground (root) in the OE line was dominantly higher than that in the WT; however, the Cd content of aboveground (shoot) was comparable between the OE and WT types. Moreover, the qRT‒PCR results showed that several heavy metal detoxification-related genes (AtIREG2, AtMTP3, AtHMA3, and AtNAS4) were significantly upregulated in the roots of OE lines under Cd treatment, suggesting that these genes are likely involved in Cd absorption in the roots of OE lines. In addition, both comparable transcriptome and qRT-PCR analyses revealed that exogenous BcaSOD1 noticeably facilitates detoxification by stimulating the expression of two arginine (Arg) biosynthesis genes (AtGDH1 and AtGDH2) while inhibiting the expression of AtARGAH1, a negative regulator in biosynthesis of Arg. The Arg content was subsequently confirmed to be significantly enhanced in OE lines under Cd treatment, indicating that BcaSOD1 likely strengthened Cd tolerance by regulating the expression of Arg-related genes. This study demonstrates that BcaSOD1 can enhance Cd tolerance and reveals the molecular mechanism of this gene, providing valuable insights into the molecular mechanism of Cd tolerance in plants.
Collapse
Affiliation(s)
- Biao Pang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Tinghai Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lizhou Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lvlan Ye
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
2
|
Li R, Tang F, Che Y, Fernie AR, Zhou Q, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. MeGLYI-13, a Glyoxalase I Gene in Cassava, Enhances the Tolerance of Yeast and Arabidopsis to Zinc and Copper Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3375. [PMID: 37836115 PMCID: PMC10574700 DOI: 10.3390/plants12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Fenlian Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yannian Che
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Zhou Q, Li R, Fernie AR, Che Y, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. Integrated Analysis of Morphological, Physiological, Anatomical and Molecular Responses of Cassava Seedlings to Different Light Qualities. Int J Mol Sci 2023; 24:14224. [PMID: 37762526 PMCID: PMC10531943 DOI: 10.3390/ijms241814224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Light quality is highly important for growth control of in vitro plant cultures. Here, we investigated the effect of blue light (BL), red light (RL) and combined red and blue light (RBL) on in vitro cassava growth. Our results indicate that RL facilitated radial elongation of cassava and increased stomatal conductance as well as glucose, sucrose, fructose and starch content in leaves and cellulose content in the stem. It also enhanced SOD and POD activities but decreased the stomatal density and chlorophyll and carotenoid content in leaves. In addition, RL leads to shorter palisade cells, denser chloroplasts and more starch granules. These phenotypic changes were inverted following BL treatment. The expression levels of photosynthesis-related genes MeLHCA1, MeLHCA3, MePSB27-2, MePSBY, MePETE1 and MePNSL2 in leaves were at their lowest following RL treatment, while the expression levels of MePSB27-2, MePSBY, MePETE1 and MePNSL2 were at their highest after BL treatment. The phenotypic changes after RBL treatment were between the values observed for the RL and BL treatments alone. Moreover, the responses of SC8 and SC9 cassava varieties to light quality were largely conserved. As such, we believe that the results of this study lay the foundation for controlling the in vitro growth of cassava seedlings by light quality.
Collapse
Affiliation(s)
- Qin Zhou
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Ruimei Li
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam, Germany;
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam, Germany;
| | - Yannian Che
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Zhongping Ding
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
| | - Jianchun Guo
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| |
Collapse
|
4
|
Wang S, Li R, Zhou Y, Fernie AR, Ding Z, Zhou Q, Che Y, Yao Y, Liu J, Wang Y, Hu X, Guo J. Integrated Characterization of Cassava ( Manihot esculenta) Pectin Methylesterase ( MePME) Genes to Filter Candidate Gene Responses to Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2529. [PMID: 37447090 DOI: 10.3390/plants12132529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Plant pectin methylesterases (PMEs) play crucial roles in regulating cell wall modification and response to various stresses. Members of the PME family have been found in several crops, but there is a lack of research into their presence in cassava (Manihot esculent), which is an important crop for world food security. In this research, 89 MePME genes were identified in cassava that were separated into two types (type-Ⅰ and type-Ⅱ) according to the existence or absence of a pro-region (PMEI domain). The MePME gene members were unevenly located on 17 chromosomes, with 19 gene pairs being identified that most likely arose via duplication events. The MePMEs could be divided into ten sub-groups in type-Ⅰ and five sub-groups in type-Ⅱ. The motif analysis revealed 11 conserved motifs in type-Ⅰ and 8 in type-Ⅱ MePMEs. The number of introns in the CDS region of type-Ⅰ MePMEs ranged between one and two, and the number of introns in type-Ⅱ MePMEs ranged between one and nine. There were 21 type-Ⅰ and 31 type-Ⅱ MePMEs that contained signal peptides. Most of the type-Ⅰ MePMEs had two conserved "RK/RLL" and one "FPSWVS" domain between the pro-region and the PME domain. Multiple stress-, hormone- and tissue-specific-related cis-acting regulatory elements were identified in the promoter regions of MePME genes. A total of five co-expressed genes (MePME1, MePME2, MePME27, MePME65 and MePME82) were filtered from different abiotic stresses via the use of UpSet Venn diagrams. The gene expression pattern analysis revealed that the expression of MePME1 was positively correlated with the degree of cassava postharvest physiological deterioration (PPD). The expression of this gene was also significantly upregulated by 7% PEG and 14 °C low-temperature stress, but slightly downregulated by ABA treatment. The tissue-specific expression analysis revealed that MePME1 and MePME65 generally displayed higher expression levels in most tissues than the other co-expressed genes. In this study, we obtain an in-depth understanding of the cassava PME gene family, suggesting that MePME1 could be a candidate gene associated with multiple abiotic tolerance.
Collapse
Affiliation(s)
- Shijia Wang
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ruimei Li
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yangjiao Zhou
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zhongping Ding
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qin Zhou
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yannian Che
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinwen Hu
- College of Life Sciences, Hainan University, Haikou 570228, China
- College of Chemical and Materials Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Jianchun Guo
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
5
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
6
|
Wu X, Wang Y, Bian Y, Ren Y, Xu X, Zhou F, Ding H. A critical review on plant annexin: Structure, function, and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:81-89. [PMID: 36108355 DOI: 10.1016/j.plaphy.2022.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant annexins are evolutionary conserved protein family widely exist in almost all plant species, characterized by a shorter N-terminal region and four conservative annexin repeats. Plant annexins have Ca2+ channel-regulating activity and peroxidase as well as ATPase/GTPase activities, which give annexins functional specificity. They are widely involved in regulating diverse aspects of biochemical and cellular processes, plant growth and development, and responses to biotic and abiotic environmental stresses. Though many studies have reviewed the function of annexins, great progress have been made in the study of plant annexins recently. In this review, we outline the current understanding of basic properties of plant annexins and summarize the emerging advances in understanding the functional roles of annexins in plants and highlight the regulation mechanisms of annexin protein in response to stress especially to salt and cold stress. The interesting questions related to plant annexin that remain to be further elucidated are also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhao Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|