1
|
Zhang Y, Peng Y, Zhang H, Gao Q, Song F, Cui X, Mo F. Genome-Wide Identification of APX Gene Family in Citrus maxima and Expression Analysis at Different Postharvest Preservation Times. Genes (Basel) 2024; 15:911. [PMID: 39062690 PMCID: PMC11276291 DOI: 10.3390/genes15070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ascorbate peroxidase (APX) is a crucial enzyme involved in cellular antioxidant defense and plays a pivotal role in modulating reactive oxygen species (ROS) levels under various environmental stresses in plants. This study utilized bioinformatics methods to identify and analyze the APX gene family of pomelo, while quantitative real-time PCR (qRT-PCR) was employed to validate and analyze the expression of CmAPXs at different stages of fruit postharvest. This study identified 96 members of the CmAPX family in the entire pomelo genome, with uneven distribution across nine chromosomes and occurrences of gene fragment replication. The subcellular localization includes peroxisome, cytoplasm, chloroplasts, and mitochondria. The CmAPX family exhibits a similar gene structure, predominantly consisting of two exons. An analysis of the upstream promoter regions revealed a significant presence of cis-acting elements associated with light (Box 4, G-Box), hormones (ABRE, TCA-element), and stress-related (MBS, LTR, ARE) responses. Phylogenetic and collinearity analyses revealed that the CmAPX gene family can be classified into three subclasses, with seven collinear gene pairs. Furthermore, CmAPXs are closely related to citrus, pomelo, and lemon, followed by Arabidopsis, and exhibit low homology with rice. Additionally, the transcriptomic heat map and qPCR results revealed that the expression levels of CmAPX57, CmAPX34, CmAPX50, CmAPX4, CmAPX5, and CmAPX81 were positively correlated with granulation degree, indicating the activation of the endogenous stress resistance system in pomelo cells by these genes, thereby conferring resistance to ROS. This finding is consistent with the results of GO enrichment analysis. Furthermore, 38 miRNAs were identified as potential regulators targeting the CmAPX family for post-transcriptional regulation. Thus, this study has preliminarily characterized members of the APX gene family in pomelo and provided valuable insights for further research on their antioxidant function and molecular mechanism.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Peng
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Huixin Zhang
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Qiuyu Gao
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Fangfei Song
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Xueyu Cui
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Fulei Mo
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Vargas JA, Sculaccio SA, Pinto APA, Pereira HD, Mendes LFS, Flores JF, Cobos M, Castro JC, Garratt RC, Leonardo DA. Structural insights into the Smirnoff-Wheeler pathway for vitamin C production in the Amazon fruit camu-camu. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2754-2771. [PMID: 38224521 DOI: 10.1093/jxb/erae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.
Collapse
Affiliation(s)
- Jhon A Vargas
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Susana A Sculaccio
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Humberto D'Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Luis F S Mendes
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Jhoao F Flores
- Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, Campinas, SP 13083-862, Brazil
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
3
|
Mahajan S, Bisht MS, Chakraborty A, Sharma VK. Genome of Phyllanthus emblica: the medicinal plant Amla with super antioxidant properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1210078. [PMID: 37727852 PMCID: PMC10505619 DOI: 10.3389/fpls.2023.1210078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Phyllanthus emblica or Indian gooseberry, commonly known as amla, is an important medicinal horticultural plant used in traditional and modern medicines. It bears stone fruits with immense antioxidant properties due to being one of the richest natural sources of vitamin C and numerous flavonoids. This study presents the first genome sequencing of this species performed using 10x Genomics and Oxford Nanopore Technology. The draft genome assembly was 519 Mbp in size and consisted of 4,384 contigs, N50 of 597 Kbp, 98.4% BUSCO score, and 37,858 coding sequences. This study also reports the genome-wide phylogeny of this species with 26 other plant species that resolved the phylogenetic position of P. emblica. The presence of three ascorbate biosynthesis pathways including L-galactose, galacturonate, and myo-inositol pathways was confirmed in this genome. A comprehensive comparative evolutionary genomic analysis including gene family expansion/contraction and identification of multiple signatures of adaptive evolution provided evolutionary insights into ascorbate and flavonoid biosynthesis pathways and stone fruit formation through lignin biosynthesis. The availability of this genome will be beneficial for its horticultural, medicinal, dietary, and cosmetic applications and will also help in comparative genomics analysis studies.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Vargas JA, Leonardo DA, D’Muniz Pereira H, Lopes AR, Rodriguez HN, Cobos M, Marapara JL, Castro JC, Garratt RC. Structural Characterization of L-Galactose Dehydrogenase: An Essential Enzyme for Vitamin C Biosynthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1140-1155. [PMID: 35765894 PMCID: PMC9381564 DOI: 10.1093/pcp/pcac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In plants, it is well-known that ascorbic acid (vitamin C) can be synthesized via multiple metabolic pathways but there is still much to be learned concerning their integration and control mechanisms. Furthermore, the structural biology of the component enzymes has been poorly exploited. Here we describe the first crystal structure for an L-galactose dehydrogenase [Spinacia oleracea GDH (SoGDH) from spinach], from the D-mannose/L-galactose (Smirnoff-Wheeler) pathway which converts L-galactose into L-galactono-1,4-lactone. The kinetic parameters for the enzyme are similar to those from its homolog from camu camu, a super-accumulator of vitamin C found in the Peruvian Amazon. Both enzymes are monomers in solution and have a pH optimum of 7, and their activity is largely unaffected by high concentrations of ascorbic acid, suggesting the absence of a feedback mechanism acting via GDH. Previous reports may have been influenced by changes of the pH of the reaction medium as a function of ascorbic acid concentration. The structure of SoGDH is dominated by a (β/α)8 barrel closely related to aldehyde-keto reductases (AKRs). The structure bound to NAD+ shows that the lack of Arg279 justifies its preference for NAD+ over NADP+, as employed by many AKRs. This favors the oxidation reaction that ultimately leads to ascorbic acid accumulation. When compared with other AKRs, residue substitutions at the C-terminal end of the barrel (Tyr185, Tyr61, Ser59 and Asp128) can be identified to be likely determinants of substrate specificity. The present work contributes toward a more comprehensive understanding of structure-function relationships in the enzymes involved in vitamin C synthesis.
Collapse
Affiliation(s)
| | | | - Humberto D’Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Adriana R Lopes
- Laboratory of Biochemistry, Instituto Butantan, Av. Vital Brasil, São Paulo 1500, Brazil
| | - Hicler N Rodriguez
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Av. Abelardo Quiñones km 2.5, Iquitos 16006, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | - Jorge L Marapara
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria - Zungarococha, San Juan Bautista 16000, Peru
| | | |
Collapse
|
5
|
Zheng X, Gong M, Zhang Q, Tan H, Li L, Tang Y, Li Z, Peng M, Deng W. Metabolism and Regulation of Ascorbic Acid in Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121602. [PMID: 35736753 PMCID: PMC9228137 DOI: 10.3390/plants11121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Huaqiang Tan
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Liping Li
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Youwan Tang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Mingchao Peng
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| |
Collapse
|
6
|
Alós E, Rey F, Gil JV, Rodrigo MJ, Zacarias L. Ascorbic Acid Content and Transcriptional Profiling of Genes Involved in Its Metabolism during Development of Petals, Leaves, and Fruits of Orange ( Citrus sinensis cv. Valencia Late). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122590. [PMID: 34961061 PMCID: PMC8707836 DOI: 10.3390/plants10122590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 05/13/2023]
Abstract
Citrus fruit is one of the most important contributors to the ascorbic acid (AsA) intake in humans. Here, we report a comparative analysis of AsA content and transcriptional changes of genes related to its metabolism during development of petals, leaves and fruits of Valencia Late oranges (Citrus sinensis). Petals of close flowers and at anthesis contained the highest concentration of AsA. In fruits, AsA content in the flavedo reached a maximum at color break, whereas the pulp accumulated lower levels and experienced minor fluctuations during development. AsA levels in leaves were similar to those in the flavedo at breaker stage. The transcriptional profiling of AsA biosynthetic, degradation, and recycling genes revealed a complex and specific interplay of the different pathways for each tissue. The D-galacturonic acid pathway appeared to be relevant in petals, whereas in leaves the L-galactose pathway (GGP and GME) also contributed to AsA accumulation. In the flavedo, AsA content was positively correlated with the expression of GGP of the L-galactose pathway and negatively with DHAR1 gene of the recycling pathway. In the pulp, AsA appeared to be mainly controlled by the coordination among the D-galacturonic acid pathway and the MIOX and GalDH genes. Analysis of the promoters of AsA metabolism genes revealed a number of cis-acting elements related to developmental signals, but their functionalities remain to be investigated.
Collapse
Affiliation(s)
- Enriqueta Alós
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Florencia Rey
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - José Vicente Gil
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Food Technology Area, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María Jesús Rodrigo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Lorenzo Zacarias
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Correspondence: ; Tel.: +34-96-3900022
| |
Collapse
|