1
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
2
|
Martínez González AP, Coy-Barrera ED, Ardila Barrantes HD. Extracción y análisis de metabolitos fenólicos apoplásticos en raíz y tallo de clavel (Dianthus caryophyllus L). REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v51n1.99258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En el presente estudio se describe el acondicionamiento de algunos parámetros con fines de obtención eficiente de extractos apoplásticos enriquecidos en compuestos polares, principalmente fenólicos. Este flujo de trabajo descrito, incluso, puede ser aplicado a diferentes especies vegetales para ser empleado en el análisis particular o global de metabolitos en este espacio extracelular periférico. Para ello, usando raíces y tallos de clavel (Dianthus cariophyllus L), se evaluaron diferentes soluciones de infiltración para la extracción de los metabolitos apoplásticos. El mejor resultado se logró con la disolución amortiguadora NaH2PO4-Na2HPO4 0,1 M pH 6,5/NaCl 50 mM, porque se obtiene la mayor cantidad de metabolitos fenólicos apoplásticos, con la menor contaminación de compuestos intracelulares. Los metabolitos se separaron mediante HPLC-DAD-ESI-MS, obteniendo perfiles cromatográficos con parámetros de calidad razonables basados en resolución, selectividad y número de platos teóricos. Con estas condiciones, fue posible identificar ocho compuestos diferenciales (una flavona y siete flavonoles), cuyas estructuras básicas comprendían flavonoides del tipo (iso)pratol, kaempférido, (dihidro)kaempferol, quercetina y miricetina, según el órgano de prueba y la variedad. Los flavonoides identificados están relacionados con metabolitos de tipo fitoanticipina en el clavel, como hidroxi-metoxiflavona, di-o-benzoilquercetina y kaempférido disaliciloilrhamnósido, abundantemente presentes en la variedad resistente. Las condiciones descritas en este trabajo son fundamentales para profundizar en el papel de los metabolitos fenólicos apoplásticos relacionados con los mecanismos de defensa de esta planta ornamental.
Collapse
|
3
|
Romero-Rincón A, Martínez ST, Higuera BL, Coy-Barrera E, Ardila HD. Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. PHYTOCHEMISTRY 2021; 192:112933. [PMID: 34482105 DOI: 10.1016/j.phytochem.2021.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Rooted cuttings from two carnation (Dianthus caryophyllus L.) cultivars showing contrasting responses to the vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) were inoculated with this phytopathogen, and some of the biochemical responses associated with flavonoid biosynthesis were investigated in the roots. The resistant cultivar ('Golem') showed a significant increase in the levels of phenolic and flavonoid compounds at 48-96 h post-inoculation (hpi) (α = 0.05). LC-MS-based analysis indicated that the flavonoids mainly included flavanol-type glycosides, especially quercetin and kaempferol aglycones. Quantification of the mRNA levels of genes encoding CHS (Chalcone Synthase), CHI (Chalcone Isomerase), FLS (Flavonol Synthase), and the transcription factor MYB11 by using reverse transcription quantitative polymerase chain reaction (RT-qPCR) indicated that the resistant cultivar exhibited higher expression levels of these genes and, therefore, showed more flavonoid accumulation at 96 hpi. The differences in the temporal regulation of the assessed variables during infection support the idea that the early expression of enzymes of the flavonoid biosynthesis pathway in carnation roots is linked to a resistance response to the hemibiotrophic pathogen Fod race 2. The present experimental approach is the first report describing the molecular mechanisms underlying flavonoid biosynthesis in carnation roots during their interaction with Fod.
Collapse
Affiliation(s)
- Ana Romero-Rincón
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia; Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Sixta Tulia Martínez
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Blanca Ligia Higuera
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Harold Duban Ardila
- Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. 45-03, Bogotá, 111321, Colombia.
| |
Collapse
|