1
|
Ali S, Akhtar MS, Siraj M, Zaman W. Molecular Communication of Microbial Plant Biostimulants in the Rhizosphere Under Abiotic Stress Conditions. Int J Mol Sci 2024; 25:12424. [PMID: 39596488 PMCID: PMC11595105 DOI: 10.3390/ijms252212424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Microbial plant biostimulants offer a promising, sustainable solution for enhancing plant growth and resilience, particularly under abiotic stress conditions such as drought, salinity, extreme temperatures, and heavy metal toxicity. These biostimulants, including plant growth-promoting rhizobacteria, mycorrhizal fungi, and nitrogen-fixing bacteria, enhance plant tolerance through mechanisms such as phytohormone production, nutrient solubilization, osmotic adjustment, and antioxidant enzyme activation. Advances in genomics, metagenomics, transcriptomics, and proteomics have significantly expanded our understanding of plant-microbe molecular communication in the rhizosphere, revealing mechanisms underlying these interactions that promote stress resilience. However, challenges such as inconsistent field performance, knowledge gaps in stress-related molecular signaling, and regulatory hurdles continue to limit broader biostimulant adoption. Despite these challenges, microbial biostimulants hold significant potential for advancing agricultural sustainability, particularly amid climate change-induced stresses. Future studies and innovation, including Clustered Regularly Interspaced Short Palindromic Repeats and other molecular editing tools, should optimize biostimulant formulations and their application for diverse agro-ecological systems. This review aims to underscore current advances, challenges, and future directions in the field, advocating for a multidisciplinary approach to fully harness the potential of biostimulants in modern agriculture.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | - Muhammad Siraj
- Department of Biotechnology, Jeonbuk National University, Specialized Campus, Iksan 54896, Republic of Korea;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Yang J, Chen Z, Dai J, Liu F, Zhu J. Research on the optimal ratio of improved electrolytic manganese residue substrate about Pennisetum sinese Roxb growth effects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2206-2215. [PMID: 39049592 DOI: 10.1080/15226514.2024.2379610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn2+, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for Pennisetum sinese Roxb growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% Hericium erinaceus fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g-1) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of Pennisetum sinese Roxb increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g-1) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g-1) was lowest. Our study suggested P. sinese Roxb grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.
Collapse
Affiliation(s)
- Jian Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Zuyong Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jie Dai
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| | - Jian Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guiyang, China
| |
Collapse
|
3
|
Verma I, Soni SK, Singh PC. Trichoderma produces methyl jasmonate-rich metabolites in the presence of Fusarium, showing biostimulant activity and wilt resistance in tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108953. [PMID: 39151367 DOI: 10.1016/j.plaphy.2024.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Bioactive secondary metabolites from fungi, including Trichoderma, are an excellent source of plant biostimulants. Although production of novel biostimulants from known microbes is critical, challenging them may produce novel bioactive compounds. With this hypothesis, the study used live Fusarium chlamydosporum (FOL7) culture as the inducer during T. harzianum (IF63) growth in broth. Plate assays and gas chromatography-mass spectrometry (GC-MS) analysis were used to characterise the metabolites. Microscopy, pot experiments and, biochemical estimations of the defence-related enzymes in tomato plants established the biostimulant activity of the induced Trichoderma metabolites. Fungal crude metabolites (FCM) obtained from IF63+FOL7 extracts (TF.ex) showed increased antimicrobial activity. TF.ex at 50 μg mL-1, inhibited the FOL7 growth by 68.33% compared to the Trichoderma alone extract. Scanning electron microscopy (SEM) revealed morphological disruption of FOL7 mycelia by TF.ex. GC-MS analysis of the extracts revealed the presence of approximately 64 compounds, of which at least 13 were detected explicitly in TF.ex. Methyl (3-oxo-2-pentylcyclopentyl) acetate (Methyl dihydrojasmonate), a lipid functionally related to jasmonic acid, was the major metabolite (∼21%) present in TF.ex. Tomato seed dressing with TF.ex promoted plant growth and induced systemic resistance against FOL7 compared to alone Trichoderma and Fusarium extracts. The TF.ex treatment increased the superoxide dismutase (33%) and catalase activity by 2.5-fold in tomato plants. The study concludes that fungal secondary metabolites may be modulated by providing appropriate challenges to produce effective metabolite-based biostimulants for agricultural applications.
Collapse
Affiliation(s)
- Isha Verma
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sumit K Soni
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Poonam C Singh
- Microbial Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
4
|
Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid Bioformulation: A Trending Approach Towards Achieving Sustainable Agriculture. Mol Biotechnol 2024; 66:2725-2750. [PMID: 37923941 DOI: 10.1007/s12033-023-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023]
Abstract
The human population is expanding at an exponential rate, and has created a great surge in the demand for food production. To intensify the rate of crop production, there is a tremendous usage of chemical pesticides and fertilizers. The practice of using these chemicals to enhance crop productivity has resulted in the degradation of soil fertility, leading to the depletion of native soil microflora. The constant application of these hazardous chemicals in the soil possesses major threat to humans and animals thereby impacting the agroecosystem severely. Hence, it is very important to hunt for certain new alternatives for enhancing crop productivity in an eco-friendly manner by using the microbial bioformulations. Microbial bioformulations can be mainly divided into two types: solid and liquid. There is a lot of information available on the subject of solid bioformulation, but the concept of liquid bioformulation is largely ignored. This article focuses on the diverse spectrum of liquid bioformulation pertaining to the market capture, its different types, potency of the product, mode of usage, and the limitations encountered. Also the authors have tried to include all the strategies required for sensitizing and making liquid bioformulation approach cost effective and as a greener strategy to succeed in developing countries.
Collapse
Affiliation(s)
- Samaksh Rai
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Geetika Aggarwal
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anjali Yadav
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
5
|
Kumar SR, David EM, Pavithra GJ, Kumar GS, Lesharadevi K, Akshaya S, Basavaraddi C, Navyashree G, Arpitha PS, Sreedevi P, Zainuddin K, Firdous S, Babu BR, Prashanth MU, Ravikumar G, Basavaraj P, Chavana SK, Kumar VMLD, Parthasarathi T, Subbian E. Methane-derived microbial biostimulant reduces greenhouse gas emissions and improves rice yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1432460. [PMID: 39301158 PMCID: PMC11410644 DOI: 10.3389/fpls.2024.1432460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Introduction More than half of the world's population consumes rice as their primary food. The majority of rice production is concentrated in Asia, with the top 10 rice-growing countries accounting for 84% of the world's total rice cultivation. However, rice production is also strongly linked to environmental changes. Among all the global sources of greenhouse gas (GHG) emissions, paddy cultivation stands out as a significant contributor to global methane (CH4) and nitrous oxide (N2O) emissions. This contribution is expected to increase further with the projected increase of 28% in global rice output by 2050. Hence, modifications to rice management practices are necessary both to increase yield and mitigate GHG emissions. Methods We investigated the effect of seedling treatment, soil application, and foliar application of a methane-derived microbial biostimulant on grain yield and GHG emissions from rice fields over three seasons under 100% fertilizer conditions. Further, microbial biostimulant was also tested under 75% nitrogen (N) levels to demonstrate its effect on grain yield. To understand the mechanism of action of microbial biostimulant on crop physiology and yield, a series of physiological, transcript, and metabolite analyses were also performed. Results Our three-season open-field studies demonstrated a significant enhancement of grain yield, up to 39%, with a simultaneous reduction in CH4 (31%-60%) and N2O (34%-50%) emissions with the use of methane-derived microbial biostimulant. Under 75% N levels, a 34% increase in grain yield was observed with microbial biostimulant application. Based on the physiological, transcript, and metabolite analyses data, we were further able to outline the potential mechanisms for the diverse synergistic effects of methane-derived microbial biostimulant on paddy, including indole-3-acetic acid production, modulation of photosynthesis, tillering, and panicle development, ultimately translating to superior yield. Conclusion The reduction in GHG emission and enhanced yield observed under both recommended and reduced N conditions demonstrated that the methane-derived biostimulant can play a unique and necessary role in the paddy ecosystem. The consistent improvements seen across different field trials established that the methane-derived microbial biostimulant could be a scalable solution to intensify rice productivity with a lower GHG footprint, thus creating a win-win-win solution for farmers, customers, and the environment.
Collapse
Affiliation(s)
- Sarma Rajeev Kumar
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | - Einstein Mariya David
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | | | - Gopalakrishnan Sajith Kumar
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Kuppan Lesharadevi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Selvaraj Akshaya
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | | | | | | | - Padmanabhan Sreedevi
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | | | - Saiyyeda Firdous
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | | | | | | | | | | | | | - Theivasigamani Parthasarathi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | - Ezhilkani Subbian
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| |
Collapse
|
6
|
Ghorui M, Chowdhury S, Balu P, Burla S. Arbuscular Mycorrhizal inoculants and its regulatory landscape. Heliyon 2024; 10:e30359. [PMID: 38711654 PMCID: PMC11070868 DOI: 10.1016/j.heliyon.2024.e30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
One of the most prominent means for sustainable agriculture and ecosystem management are Arbuscular Mycorrhizal (AM) inoculants. These inoculants establish beneficial symbiotic relationships with land plant roots, offering a wide range of benefits, from enhanced nutrient absorption to improved resilience against environmental stressors. However, several currently available commercial AM inoculants face challenges such as inconsistency in field applications, ecological risks associated with non-native strains, and the absence of universal regulations. Currently, regulations for AM inoculants vary globally, with some regions leading efforts to standardize and ensure quality control. Proposed regulatory frameworks aim to establish parameters for composition, safety, and efficacy. Nevertheless, challenges persist in terms of scientific data, standardization, testing under real conditions, and the ecological impact of these inoculants. To address these challenges and unlock the full potential of AM inoculants, increased research funding, public-private partnerships, monitoring, awareness, and ecosystem impact studies are recommended. Future regulations have the potential to improve product quality, soil health, and crop productivity while reducing reliance on chemical inputs and benefiting the environment. However, addressing issues related to compliance, standardization, education, certification, monitoring, and cost is essential for realizing these benefits. Global harmonization and collaborative efforts are vital to maximize their impact on agriculture and ecosystem management, leading to healthier soils, increased crop yields, and a more sustainable agricultural industry.
Collapse
Affiliation(s)
- Maunata Ghorui
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Shouvik Chowdhury
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Prakash Balu
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600 117, India
| | - Sashidhar Burla
- ATGC Biotech Pvt. Ltd., Sy. No. 494, 495 & 496, ATGC Agri Biotech Innovation Square, TSIC Kolthur Biotech Park, Genome Valley, Shamirpet Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
7
|
Taj Z, Bakka K, Challabathula D. Halotolerant PGPB Staphylococcus sciuri ET101 protects photosynthesis through activation of redox dissipation pathways in Lycopersicon esculentum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108482. [PMID: 38492488 DOI: 10.1016/j.plaphy.2024.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Photosynthesis is known to be seriously affected by salt stress. The stress induced membrane damage leads to disrupted photosynthetic components causing imbalance between production and utilization of ATP/NADPH with generation of ROS leading to photoinhibition and photodamage. In the current study, role of halotolerant plant growth promoting bacteria (PGPB) Staphylococcus sciuri ET101 in protection of photosynthesis in tomato plants during salinity stress was evaluated by analysing changes in antioxidant defense and activation of redox dissipation pathways. Inoculation of S. sciuri ET101 significantly enhanced the growth of tomato plants with significantly higher photosynthetic rates (PN) under normal and salinity stress conditions. Further, increased membrane stability, soluble sugar accumulation and significant decrease in malondialdehyde (MDA) content in leaves of ET101 inoculated tomato plants under normal and salinity were observed along with increased expression of antioxidant genes for efficient ROS detoxification and suppression of oxidative damage. Additionally, salinity induced decrease in rate of photosynthesis (PN) due to lowered chloroplastic CO2 concentration (Cc) attributed by low mesophyll conductance (gm) in uninoculated plants was alleviated by ET101 inoculation showing significantly higher carboxylation rate (Vcmax), RuBP generation (Jmax) and increased photorespiration (PR). The genes involved in photorespiratory process, cyclic electron flow (CEF), and alternative oxidase (AOX) pathway of mitochondrial respiration were abundantly expressed in leaves of ET101 inoculated plants indicating their involvement in protecting photosynthesis from salt stress induced photoinhibition. Collectively, our results indicated that S. sciuri ET101 has the potential in protecting photosynthesis of tomato plants under salinity stress through activation of redox dissipation pathways.
Collapse
Affiliation(s)
- Zarin Taj
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Dinakar Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India; Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| |
Collapse
|
8
|
Hao J, Tan J, Zhang Y, Gu X, Zhu G, Wang S, Li J. Sewage sludge-derived nutrients and biostimulants stimulate rice leaf photosynthesis and root metabolism to enhance carbohydrate, nitrogen and antioxidants accumulation. CHEMOSPHERE 2024; 352:141335. [PMID: 38301837 DOI: 10.1016/j.chemosphere.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The production of high quality liquid nitrogen fertilizer with both nutrient comprehensive and biostimulant properties by alkaline thermal hydrolysis of sewage sludge has shown great potential in agricultural production. However, little is known about the effects of sewage sludge-derived nutrients, and biostimulants (SS-NB) on leaf photosynthesis and root growth in rice. Phenotypic, metabolic and microbial analyses were used to reveal the mechanism of SS-NB on rice. Compared to NF treatment, phenotypic parameters (fresh/dry weight, soluble sugar, amino acid, protein) were increased by SS-NB in rice. SS-NB can enhance the photosynthesis of rice leaves by improving the photoconversion efficiency, chlorophyll content, ATP synthase activity, Rubisco and NADPH production. Meanwhile, SS-NB also increased antioxidant capacity (SOD, POD, CAT and proline) in rice leaf and root tissues. Metabolomics revealed that SS-NB application increased the expression levels of metabolites in root and leaf tissues, including carbohydrate, nitrogen and sulfur metabolism, amino acid metabolism, antioxidants, and phytohormone. Most importantly, the regulation of metabolites in rice root tissues is more sensitive than in leaf tissues, especially to the higher levels of antioxidants and phytohormones (IAA and GA) in rice root tissues. Furthermore, SS-NB increased the abundance of photosynthetic autotrophic, organic acids-degrading and denitrifying functional bacteria in rice roots and recruited plant growth-promoting bacteria (Azospirillum and norank_f_JG30-KF-CM45), while the NF treatment group resulted in an imbalance of the microbial community, leading to the dominance of pathogenic bacteria. The results showed that SS-NB had great application potential in crop growth and stress resistance improvement.
Collapse
Affiliation(s)
- Jiahou Hao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiayi Tan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xuejia Gu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Ge Zhu
- Wuxi Huilian Green Ecological Technology Co., LTD, Wuxi, 214100, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
9
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
10
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
11
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
12
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
13
|
Sahu PK, Shafi Z, Singh S, Ojha K, Jayalakshmi K, Tilgam J, Manzar N, Sharma PK, Srivastava AK. Colonization potential of endophytes from halophytic plants growing in the "Runn of Kutch" salt marshes and their contribution to mitigating salt stress in tomato cultivation. Front Microbiol 2023; 14:1226149. [PMID: 37705729 PMCID: PMC10495581 DOI: 10.3389/fmicb.2023.1226149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing soil salinity depreciates the quantity of the crop produce. Looking at the tremendous potential of plant-associated microorganisms in salinity stress mitigation, it would be very useful in exploring and deciphering salt-tolerant microorganisms from halophytic plants and their utilization in cultivated plants. With this aim, in the present study, four halophytic plants were taken from Rann of Kutch, and bacterial endophytes were isolated from different plant organs. These endophytes were characterized by plant growth and health promotion features. The molecular identification was done based on 16 s rRNA sequence similarity. It was found that the endophytic bacteria isolated from 4 different halophytes found sharing phylogenetic relatedness. Four potential endophytes Alkalihalobacillus gibsonii 2H2, Achromobacter insuavis 2H18, Terribacillus halophilus 2H20, and Bacillus siamensis 4H1 were tested in tomato for salinity stress alleviation. Changes in the levels of antioxidants were analyzed. Total chlorophyll, total phenolics, malondialdehyde, and proline content indicated reduced damage in the plant system due to salinity by the application of endophytes. All the treatments exhibited low levels of electrolyte leakage. The accumulation of enzymatic reactive oxygen species scavengers was assessed from the levels of peroxidase, catalase, superoxide dismutase, phenylalanine ammonia-lyase, ascorbate peroxidase, and guiacol peroxidase. The NBT and DAB staining confirmed the findings. The reduction in the accumulation of Na+ ions in tomato leaves was visualized using Sodium Green probes under CSLM and found to be lowest in Terribacillus halophilus 2H20 and Bacillus siamensis 4H1 inoculated plants. The endophyte Terribacillus halophilus 2H20 was the most promising isolate. The colonization in tomato roots was confirmed using a cell tracker system. Results showed that the endophytes were found to have salinity stress mitigation traits. The efficiency could be further improved with the combination of other endophytes tested earlier.
Collapse
Affiliation(s)
- Pramod K. Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Zaryab Shafi
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Shailendra Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khushboo Ojha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - K. Jayalakshmi
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Jyotsana Tilgam
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Pawan K. Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Alok K. Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
14
|
Muthuramalingam P, Muthamil S, Shilpha J, Venkatramanan V, Priya A, Kim J, Shin Y, Chen JT, Baskar V, Park K, Shin H. Molecular Insights into Abiotic Stresses in Mango. PLANTS (BASEL, SWITZERLAND) 2023; 12:1939. [PMID: 37653856 PMCID: PMC10224100 DOI: 10.3390/plants12101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea;
| | - Jayabalan Shilpha
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
| | | | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Jinwook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Yunji Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Venkidasamy Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Kyoungmi Park
- Department of Horticulture Research, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 52733, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| |
Collapse
|
15
|
Ganugi P, Fiorini A, Tabaglio V, Capra F, Zengin G, Bonini P, Caffi T, Puglisi E, Trevisan M, Lucini L. The Functional Profile and Antioxidant Capacity of Tomato Fruits Are Modulated by the Interaction between Microbial Biostimulants, Soil Properties, and Soil Nitrogen Status. Antioxidants (Basel) 2023; 12:antiox12020520. [PMID: 36830078 PMCID: PMC9951999 DOI: 10.3390/antiox12020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Federico Capra
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya Campus, 8300 Konya, Turkey
| | | | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence:
| |
Collapse
|
16
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Microbials for Agriculture: Why Do They Call Them Biostimulants When They Mean Probiotics? Microorganisms 2023; 11:microorganisms11010153. [PMID: 36677445 PMCID: PMC9867170 DOI: 10.3390/microorganisms11010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
There is growing interest in using plant-beneficial microorganisms to partially replace chemicals and help reduce the environmental impact of agriculture. Formulated microbial products or inoculants for agriculture contain single strains or a consortium of live microbes, well characterized and biosafe, which can contribute to the growth, health, and development of a plant host. This concept conforms to the definition of probiotics. However, some plant-growth-promoting microorganisms (PGPMs) have been considered a category of biostimulants since some years ago, despite the traditional concept of biostimulants involves substances or materials with no fertilizer value, which in minute amounts promote plant growth. The inclusion of PGPMs together with substances has also involved a significant distortion of the classical concept of biostimulants. Regulations such as the recent EU Fertilizing Products Regulation (EU No. 2019/1009) have incorporated the new definition of biostimulants and included microbials as a subcategory of biostimulants. We discuss that this regulation and the forthcoming European harmonized standards disregard some key features of microbial products, such as the live, true biological nature of their active principles. The factors that determine the complex functional compatibility of plant-microbe associations, and important biosafety issues that concern the intentional release of microbes into the environment, seem to be also ignored. We anticipate that by equating microbials to chemicals, the biological nature of microbial products and their specific requirements will be underestimated, with pernicious consequences for their future development and success.
Collapse
|
18
|
Mannino G, Ricciardi M, Gatti N, Serio G, Vigliante I, Contartese V, Gentile C, Bertea CM. Changes in the Phytochemical Profile and Antioxidant Properties of Prunus persica Fruits after the Application of a Commercial Biostimulant Based on Seaweed and Yeast Extract. Int J Mol Sci 2022; 23:ijms232415911. [PMID: 36555550 PMCID: PMC9779733 DOI: 10.3390/ijms232415911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant biostimulants are formulations that are experiencing great success from the perspective of sustainable agriculture. In this work, we evaluated the effect derived from the application of a biostimulant based on algae and yeast extracts (Expando®) on the agronomic yield and nutraceutical profile of two different cultivars ("Sugar Time" and "West Rose") of Prunus persica (peach). Although, at the agronomic level, significant effects on production yields were not recorded, the biostimulant was able to reduce the ripening time, increase the fruit size, and make the number of harvestable fruits homogeneous. From a nutraceutical point of view, our determinations via spectrophotometric (UV/Vis) and chromatographic (HPLC-DAD-MS/MS) analysis showed that the biostimulant was able to boost the content of bioactive compounds in both the pulp (5.0 L/ha: +17%; 4.0 L/ha: +12%; 2.5 L/ha: +11%) and skin (4.0 L/ha: +38%; 2.5 L/ha: +15%). These changes seem to follow a dose-dependent effect, also producing attractive effects on the antioxidant properties of the fruits harvested from the treated trees. In conclusion, the biostimulant investigated in this work proved to be able to produce more marketable fruit in a shorter time, both from a pomological and a functional point of view.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
- Correspondence:
| | - Maddalena Ricciardi
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| | - Noemi Gatti
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | | | | | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Innovation Centre, Plant Physiology Unit, University of Turin, 10135 Turin, Italy
| |
Collapse
|
19
|
Mannino G, Bertea CM, Bonini P. Editorial: Characterization of biostimulants used in agriculture: A step towards sustainable and safe foods. FRONTIERS IN PLANT SCIENCE 2022; 13:1065879. [PMID: 36561455 PMCID: PMC9763982 DOI: 10.3389/fpls.2022.1065879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
20
|
Integrated Metabolomics and Morpho-Biochemical Analyses Reveal a Better Performance of Azospirillum brasilense over Plant-Derived Biostimulants in Counteracting Salt Stress in Tomato. Int J Mol Sci 2022; 23:ijms232214216. [PMID: 36430691 PMCID: PMC9698407 DOI: 10.3390/ijms232214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Increased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.
Collapse
|
21
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
23
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
24
|
Lee SK, Chiang MS, Hseu ZY, Kuo CH, Liu CT. A photosynthetic bacterial inoculant exerts beneficial effects on the yield and quality of tomato and affects bacterial community structure in an organic field. Front Microbiol 2022; 13:959080. [PMID: 36118214 PMCID: PMC9479686 DOI: 10.3389/fmicb.2022.959080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are microorganisms that promote plant health and play a critical role in sustainable agriculture. As a PGPR, Rhodopseudomonas palustris strain PS3, when applied as a microbial inoculant, exhibited beneficial effects on a variety of crops. In this study, we investigated the effects of PS3 on tomato growth, soil properties, and soil microbiota composition in an organic field. The results demonstrated that PS3 inoculation significantly improved the yield of marketable tomato fruit (37%) and the postharvest quality (e.g., sweetness, taste, vitamin C, total phenolic compounds, and lycopene). Additionally, soil nutrient availability (35–56%) and enzymatic activities (13–62%) also increased. We detected that approximately 107 CFU/g soil of R. palustris survived in the PS3-treated soil after harvest. Furthermore, several bacterial genera known to be associated with nutrient cycling (e.g., Dyella, Novosphingobium, Luteimonas, Haliangium, and Thermomonas) had higher relative abundances (log2 fold change >2.0). To validate the results of the field experiment, we further conducted pot experiments with field-collected soil using two different tomato cultivars and obtained consistent results. Notably, the relative abundance of putative PGPRs in the genus Haliangium increased with PS3 inoculation in both cultivars (1.5 and 34.2%, respectively), suggesting that this genus may have synergistic interactions with PS3. Taken together, we further demonstrated the value of PS3 in sustainable agriculture and provided novel knowledge regarding the effects of this PGPR on soil microbiota composition.
Collapse
Affiliation(s)
- Sook-Kuan Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Shu Chiang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Horng Kuo,
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Chi-Te Liu,
| |
Collapse
|
25
|
Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce. PLANTS 2022; 11:plants11152030. [PMID: 35956509 PMCID: PMC9370316 DOI: 10.3390/plants11152030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L−1, and 5.0 mL L−1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L−1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L−1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production.
Collapse
|
26
|
Spinelli V, Brasili E, Sciubba F, Ceci A, Giampaoli O, Miccheli A, Pasqua G, Persiani AM. Biostimulant Effects of Chaetomium globosum and Minimedusa polyspora Culture Filtrates on Cichorium intybus Plant: Growth Performance and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:879076. [PMID: 35646045 PMCID: PMC9134003 DOI: 10.3389/fpls.2022.879076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Shukla PS, Yadav NS, Critchley AT, Prithiviraj B. Editorial: Biostimulants as an Avenue of Abiotic Stress Tolerance Improvement in Crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.908555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
29
|
Abstract
Biostimulants are agronomic tools that have been gaining importance in the reduction of fertilizer applications. They can improve the yield of cropping systems or preventing crop yield losses under abiotic stresses. Biostimulants can be composed of organic and inorganic materials and most of the components are still unknown. The characterization of the molecular mechanism of action of biostimulants can be obtained using the omics approach, which includes the determination of transcriptomic, proteomic, and metabolomic changes in treated plants. This review reports an overview of the biostimulants, taking stock on the recent molecular studies that are contributing to clarify their action mechanisms. The omics studies can provide an overall evaluation of a crop’s response, connecting the molecular changes with the physiological pathways activated and the performance with or without stress conditions. The multiple responses of plants treated with biostimulants must be correlated with the phenotype changes. In this context, it is also crucial to design an adequate experimental plan and statistical data analysis, in order to find robust correlations between biostimulant treatments and crop performance.
Collapse
|
30
|
Cardarelli M, Woo SL, Rouphael Y, Colla G. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030259. [PMID: 35161239 PMCID: PMC8838022 DOI: 10.3390/plants11030259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 05/31/2023]
Abstract
Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be applied to seeds before sowing via coating or priming treatments. Their presence establishes early relationships with plants, leading to biostimulant effects such as plant-growth enhancement, increased nutrient uptake, and improved plant resilience to abiotic stress. This review aims to highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species. Beneficial microorganism treatments increased plant germination, seedling vigor, and biomass, as well as overcoming seed-related limitations (such as abiotic stress), both during and after emergence. The results are generally positive, but variable, so more scientific information needs to be acquired for different crops and cultivation techniques, with considerations to different beneficial microbes (species and strains) and under variable climate conditions to understand the effects of seed treatments.
Collapse
Affiliation(s)
- Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy;
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| |
Collapse
|
31
|
Bridžiuvienė D, Raudonienė V, Švedienė J, Paškevičius A, Baužienė I, Vaitonis G, Šlepetienė A, Šlepetys J, Kačergius A. Impact of Soil Chemical Properties on the Growth Promotion Ability of Trichoderma ghanense, T. tomentosum and Their Complex on Rye in Different Land-Use Systems. J Fungi (Basel) 2022; 8:jof8010085. [PMID: 35050025 PMCID: PMC8777797 DOI: 10.3390/jof8010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial-based biostimulants that increase plant performance and ensure sustainable restoration of degraded soils are of great importance. The aim of the present study was to evaluate the growth promotion ability of indigenous Trichoderma ghanense, T. tomentosum and their complex on early rye seedlings in sustained grassland and arable soil. The impact of soil chemical properties on the ability of selected Trichoderma strains and their complex to promote plant growth was determined by the evaluation of the rye (Secale cereale L.) early seedling growth—measuring the length of shoots and roots as well as their dry weight. Trichoderma species were tested for their ability to produce extracellular degradative enzymes on solid media. Furthermore, the soil properties and CM-cellulase activity of soil were estimated. The indigenous Trichoderma strains possess the capacity to produce enzymes such as peroxidase, laccase, tyrosinase, and endoglucanase. The results indicated a significant (p < 0.05) increase in plant growth and the improvement of some soil chemical properties (total N, mobile humic and fulvic acids, exchangeable K2O, soil CM-cellulase activity) in inoculated soils when compared to the control. The growth of the roots of rye seedlings in sustained grassland was enhanced when T. tomentosum was applied (p = 0.005). There was an increase in total weight and shoot weight of rye seedlings when T. ghanense was used in the arable soil (p = 0.014 and p = 0.024). The expected beneficial effect of Trichoderma spp. complex on rye growth promotion was not observed in any tested soil. The results could find application in the development of new and efficient biostimulants, since not only do physiological characteristics of fungi play an important role but also the quality of the soil has an impact.
Collapse
Affiliation(s)
- Danguolė Bridžiuvienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Vita Raudonienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Jurgita Švedienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
- Correspondence:
| | - Algimantas Paškevičius
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Ieva Baužienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Gintautas Vaitonis
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Alvyra Šlepetienė
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| | - Jonas Šlepetys
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| |
Collapse
|
32
|
Abd-Elkader DY, Mohamed AA, Feleafel MN, Al-Huqail AA, Salem MZM, Ali HM, Hassan HS. Photosynthetic Pigments and Biochemical Response of Zucchini ( Cucurbita pepo L.) to Plant-Derived Extracts, Microbial, and Potassium Silicate as Biostimulants Under Greenhouse Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:879545. [PMID: 35665186 PMCID: PMC9159351 DOI: 10.3389/fpls.2022.879545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 05/17/2023]
Abstract
There are many technological innovations in the field of agriculture to improve the sustainability of farmed products by reducing the chemicals used. Uses of biostimulants such as plant extracts or microorganisms are a promising process that increases plant growth and the efficient use of available soil resources. To determine the effects of some biostimulants' treatments on the photosynthetic pigments and biochemicals composition of zucchini plants, two experiments were conducted in 2019 and 2020 under greenhouse conditions. In this work, the effects of beneficial microbes (Trichoderma viride and Pseudomonas fluorescens), as well as three extracts from Eucalyptus camaldulensis leaf extract (LE), Citrus sinensis LE, and Ficus benghalensis fruit extract (FE) with potassium silicate (K2SiO3) on productivity and biochemical composition of zucchini fruits, were assessed as biostimulants. The results showed that E. camaldulensis LE (4,000 mg/L) + K2SiO3 (500 mg/L) and T. viride (106 spore/ml) + K2SiO3 (500 mg/L) gave the highest significance yield of zucchini fruits. Furthermore, the total reading response of chlorophylls and carotenoids was significantly affected by biostimulants' treatments. The combination of K2SiO3 with E. camaldulensis LE increased the DPPH scavenging activity and the total phenolic content of zucchini fruits, in both experiments. However, the spraying with K2SiO3 did not observe any effects on the total flavonoid content of zucchini fruits. Several phenolic compounds were identified via high-performance liquid chromatography (HPLC) from the methanol extracts of zucchini fruits such as syringic acid, eugenol, caffeic acid, pyrogallol, gallic acid, ascorbic acid, ferulic acid, α-tocopherol, and ellagic acid. The main elemental content (C and O) analyzed via energy-dispersive X-ray spectroscopy (EDX) of leaves was affected by the application of biostimulants. The success of this work could lead to the development of cheap and easily available safe biostimulants for enhancing the productivity and biochemical of zucchini plants.
Collapse
Affiliation(s)
- Doaa Y. Abd-Elkader
- Department of Vegetable, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Abeer A. Mohamed
- Plant Pathology Institute, Agriculture Research Center (ARC), Alexandria, Egypt
| | - Mostafa N. Feleafel
- Department of Vegetable, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Asma A. Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Asma A. Al-Huqail
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
- *Correspondence: Mohamed Z. M. Salem
| | - Hayssam M. Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa S. Hassan
- Department of Vegetable, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9122453. [PMID: 34946055 PMCID: PMC8707939 DOI: 10.3390/microorganisms9122453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.
Collapse
|