1
|
Guo H, Tao W, Gao H, Chen L, Zhong X, Tang M, Gao G, Liang T, Zhang X. Physiological traits, gene expression responses, and proteomics of rice varieties varying in heat stress tolerance at the flowering stage. FRONTIERS IN PLANT SCIENCE 2024; 15:1489331. [PMID: 39703554 PMCID: PMC11656201 DOI: 10.3389/fpls.2024.1489331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Introduction/Background Global warming greatly limits the productivity of rice. Rice plants are highly sensitive to heat stress at the flowering stage. The selection of heat-tolerant varieties is considered the most effective approach for ensuring global food security in the coming decades. Methods Based on previous screening and QTL localization results, we selected tolerant varieties (Huang Huazhan, HZ) and susceptible varieties (Yang Dao6, YD) of rice and studied their physiological characteristics, gene expression responses, and proteomic differences of their anthers under heat stress. The differentially expressed proteins (DEPs) were validated by real-time PCR. Results The activities of the antioxidant enzymes CAT, SOD, POD, and APX were 8.36%, 9.56%, 20.61%, and 25.34% higher in HZ than in YD under heat stress, respectively. Similarly, the content of proline and soluble sugar was 8.32% and 14.47% higher in HZ than in YD, respectively. The content of MDA and H2O2 was 8.11% and 39.5% lower in HZ than in YD, respectively. The ratio of endogenous GA3/ABA in HZ was 10.65, which was significantly higher than that of YD (3.84). In addition, we validated the candidate genes LOC_Os08g07010 and LOC_Os08g07440 that our team located in 2021, and the result showed that the expression of these two heat-tolerant genes in the anthers was significantly higher in HH than in YH. DEPs involved in the response to heat stress were identified by TMT proteomics, five upregulated and three downregulated differential expression proteins in HH. DEPs were verified by RT-qPCR. Discussion These results provide new insights into the physiological characteristics, dominant DEPs, and gene expression responses in both rice varieties under heat stress. Our results indicate that the antioxidant and osmoregulatory capacities, the ratio of endogenous GA3 and ABA, these DEPs are mainly involved in the pathways of phenylpropanoid biosynthesis, ubiquitin-mediated proteolysis, carbohydrate metabolism, thiamine metabolism, protein processing in the endoplasmic reticulum, and folding, sorting, and degradation were upregulated to a greater degree in HZ than in YD. Additional studies were performed to clarify the roles of these proteins in response to heat stress.
Collapse
Affiliation(s)
- Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Tao
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiyong Gao
- Bureau of Agriculture and Rural Affairs of Xiangfen, Xiangfen, China
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoyuan Zhong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Maoyan Tang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guoqing Gao
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianfeng Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoli Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
2
|
Sonsungsan P, Suratanee A, Buaboocha T, Chadchawan S, Plaimas K. Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes (Basel) 2024; 15:316. [PMID: 38540375 PMCID: PMC10970189 DOI: 10.3390/genes15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/14/2024] Open
Abstract
Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely LOC_Os03g45410 (OsTBP2), LOC_Os07g42400 (OsGATA23), LOC_Os01g13030 (OsIAA3), LOC_Os05g34050 (OsbZIP39), LOC_Os09g29930 (OsBIM1), and LOC_Os10g10990 (transcription initiation factor IIF), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology (CEEPP), Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
He Y, Guan H, Li B, Zhang S, Xu Y, Yao Y, Yang X, Zha Z, Guo Y, Jiao C, Cai H. Transcriptome Analysis Reveals the Dynamic and Rapid Transcriptional Reprogramming Involved in Heat Stress and Identification of Heat Response Genes in Rice. Int J Mol Sci 2023; 24:14802. [PMID: 37834249 PMCID: PMC10572967 DOI: 10.3390/ijms241914802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.
Collapse
Affiliation(s)
- Yonggang He
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Huimin Guan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Bo Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuo Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yanhao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yan Yao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolong Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zhongping Zha
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Ying Guo
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Haiya Cai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
4
|
Singh BK, Venkadesan S, Ramkumar MK, Shanmugavadivel PS, Dutta B, Prakash C, Pal M, Solanke AU, Rai A, Singh NK, Mohapatra T, Sevanthi AM. Meta-Analysis of Microarray Data and Their Utility in Dissecting the Mapped QTLs for Heat Acclimation in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:1697. [PMID: 37111920 PMCID: PMC10142300 DOI: 10.3390/plants12081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance. In the present study, a database, RiceMetaSys-H, comprising 4227 heat stress-responsive genes (HRGs), was created using seven publicly available microarray datasets. This included in-house-generated microarray datasets of Nagina 22 (N22) and IR64 subjected to 8 days of heat stress. The database has provisions for searching the HRGs through genotypes, growth stages, tissues, and physical intervals in the genome, as well as Locus IDs, which provide complete information on the HRGs with their annotations and fold changes, along with the experimental material used for the analysis. The up-regulation of genes involved in hormone biosynthesis and signalling, sugar metabolism, carbon fixation, and the ROS pathway were found to be the key mechanisms of enhanced heat tolerance. Integrating variant and expression analysis, the database was used for the dissection of the major effect of QTLs on chromosomes 4, 5, and 9 from the IR64/N22 mapping population. Out of the 18, 54, and 62 genes in these three QTLs, 5, 15, and 12 genes harboured non-synonymous substitutions. Fifty-seven interacting genes of the selected QTLs were identified by a network analysis of the HRGs in the QTL regions. Variant analysis revealed that the proportion of unique amino acid substitutions (between N22/IR64) in the QTL-specific genes was much higher than the common substitutions, i.e., 2.58:0.88 (2.93-fold), compared to the network genes at a 0.88:0.67 (1.313-fold) ratio. An expression analysis of these 89 genes showed 43 DEGs between IR64/N22. By integrating the expression profiles, allelic variations, and the database, four robust candidates (LOC_Os05g43870, LOC_Os09g27830, LOC_Os09g27650, andLOC_Os09g28000) for enhanced heat stress tolerance were identified. The database thus developed in rice can be used in breeding to combat high-temperature stress.
Collapse
Affiliation(s)
- Bablee Kumari Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | | | - M. K. Ramkumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - P. S. Shanmugavadivel
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Chandra Prakash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| | | |
Collapse
|
5
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Boulanger HG, Guo W, Monteiro LDFR, Calixto CPG. Co-expression network of heat-response transcripts: A glimpse into how splicing factors impact rice basal thermotolerance. Front Mol Biosci 2023; 10:1122201. [PMID: 36818043 PMCID: PMC9932781 DOI: 10.3389/fmolb.2023.1122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
To identify novel solutions to improve rice yield under rising temperatures, molecular components of thermotolerance must be better understood. Alternative splicing (AS) is a major post-transcriptional mechanism impacting plant tolerance against stresses, including heat stress (HS). AS is largely regulated by splicing factors (SFs) and recent studies have shown their involvement in temperature response. However, little is known about the splicing networks between SFs and AS transcripts in the HS response. To expand this knowledge, we constructed a co-expression network based on a publicly available RNA-seq dataset that explored rice basal thermotolerance over a time-course. Our analyses suggest that the HS-dependent control of the abundance of specific transcripts coding for SFs might explain the widespread, coordinated, complex, and delicate AS regulation of critical genes during a plant's inherent response to extreme temperatures. AS changes in these critical genes might affect many aspects of plant biology, from organellar functions to cell death, providing relevant regulatory candidates for future functional studies of basal thermotolerance.
Collapse
Affiliation(s)
- Hadrien Georges Boulanger
- Université Paris-Saclay, Gif-sur-Yvette, France,École Nationale Supérieure d'Informatique pour l'Industrie et l’Entreprise, Evry-Courcouronnes, France,Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Cristiane Paula Gomes Calixto
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Cristiane Paula Gomes Calixto,
| |
Collapse
|
8
|
Wang Y, Wang Y, Chen W, Dong Y, Zhang G, Deng H, Liu X, Lu X, Wang F, Chen G, Xiao Y, Tang W. Comparative transcriptome analysis of the mechanism difference in heat stress response between indica rice cultivar "IR64" and japonica cultivar "Koshihikari" at the seedling stage. Front Genet 2023; 14:1135577. [PMID: 37153001 PMCID: PMC10160441 DOI: 10.3389/fgene.2023.1135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Heat stress (HS) has become a major abiotic stress in rice, considering the frequency and intensity of extreme hot weather. There is an urgent need to explore the differences in molecular mechanisms of HS tolerance in different cultivars, especially in indica and japonica. In this study, we investigated the transcriptome information of IR64 (indica, IR) and Koshihikari (japonica, Kos) in response to HS at the seedling stage. From the differentially expressed genes (DEGs) consistently expressed at six time points, 599 DEGs were identified that were co-expressed in both cultivars, as well as 945 and 1,180 DEGs that were specifically expressed in IR and Kos, respectively. The results of GO and KEGG analysis showed two different HS response pathways for IR and Kos. IR specifically expressed DEGs were mainly enriched in chloroplast-related pathways, whereas Kos specifically expressed DEGs were mainly enriched in endoplasmic reticulum and mitochondria-related pathways. Meanwhile, we highlighted the importance of NO biosynthesis genes, especially nitrate reductase genes, in the HS response of IR based on protein-protein interaction networks. In addition, we found that heat shock proteins and heat shock factors play very important roles in both cultivars. This study not only provides new insights into the differences in HS responses between different subspecies of rice, but also lays the foundation for future research on molecular mechanisms and breeding of heat-tolerant cultivars.
Collapse
Affiliation(s)
- Yingfeng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yubo Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Wenjuan Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yating Dong
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guilian Zhang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabing Deng
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiong Liu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Feng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guihua Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhua Xiao
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| | - Wenbang Tang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| |
Collapse
|
9
|
Alkaloid production and response to natural adverse conditions in Peganum harmala: in silico transcriptome analyses. BIOTECHNOLOGIA 2022; 103:355-384. [PMID: 36685700 PMCID: PMC9837557 DOI: 10.5114/bta.2022.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.
Collapse
|
10
|
Srikakulam N, Sridevi G, Pandi G. High-quality reference transcriptome construction improves RNA-seq quantification in Oryza sativa indica. Front Genet 2022; 13:995072. [PMID: 36246658 PMCID: PMC9558114 DOI: 10.3389/fgene.2022.995072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive collection of transcripts originating from a given organism. It holds the key to precise transcript quantification and downstream analysis of differential expressions and regulations. Currently, transcriptome annotations for most crop plants are far from complete. For example, Oryza sativa indica (O. sativa indica) is reported to have 40,759 transcripts in the Ensembl database without alternative transcript isoforms and alternative splicing (AS) events. To generate a high-quality RTD, we conducted RNA sequencing of rice leaf samples collected at various time points during Rhizoctonia solani infection. The obtained reads were analyzed by adopting the recently developed computational analysis pipeline to assemble the RTD with increased transcript and AS diversity for O. sativa indica (IndicaRTD). After stringent quality filtering, the newly constructed transcriptome annotation was comprised of 122,968 non-redundant transcripts from 53,695 genes. This study identified many novel transcripts compared to Ensembl deposited data that are important for regulating molecular and physiological processes in the plant system. Currently, the assembled IndicaRTD must allow fast quantification of transcript and gene expression with high precision.
Collapse
Affiliation(s)
- Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| |
Collapse
|
11
|
ASTool: An Easy-to-Use Tool to Accurately Identify Alternative Splicing Events from Plant RNA-Seq Data. Int J Mol Sci 2022; 23:ijms23084079. [PMID: 35456896 PMCID: PMC9031537 DOI: 10.3390/ijms23084079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is an essential co-transcriptional regulatory mechanism in eukaryotes. The accumulation of plant RNA-Seq data provides an unprecedented opportunity to investigate the global landscape of plant AS events. However, most existing AS identification tools were originally designed for animals, and their performance in plants was not rigorously benchmarked. In this work, we developed a simple and easy-to-use bioinformatics tool named ASTool for detecting AS events from plant RNA-Seq data. As an exon-based method, ASTool can detect 4 major AS types, including intron retention (IR), exon skipping (ES), alternative 5′ splice sites (A5SS), and alternative 3′ splice sites (A3SS). Compared with existing tools, ASTool revealed a favorable performance when tested in simulated RNA-Seq data, with both recall and precision values exceeding 95% in most cases. Moreover, ASTool also showed a competitive computational speed and consistent detection results with existing tools when tested in simulated or real plant RNA-Seq data. Considering that IR is the most predominant AS type in plants, ASTool allowed the detection and visualization of novel IR events based on known splice sites. To fully present the functionality of ASTool, we also provided an application example of ASTool in processing real RNA-Seq data of Arabidopsis in response to heat stress.
Collapse
|
12
|
Tian T, Chen L, Ai Y, He H. Selection of Candidate Genes Conferring Blast Resistance and Heat Tolerance in Rice through Integration of Meta-QTLs and RNA-Seq. Genes (Basel) 2022; 13:224. [PMID: 35205268 PMCID: PMC8871662 DOI: 10.3390/genes13020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
Due to global warming, high temperature is a significant environmental stress for rice production. Rice (Oryza sativa L.), one of the most crucial cereal crops, is also seriously devastated by Magnaporthe oryzae. Therefore, it is essential to breed new rice cultivars with blast and heat tolerance. Although progress had been made in QTL mapping and RNA-seq analysis in rice in response to blast and heat stresses, there are few reports on simultaneously mining blast-resistant and heat-tolerant genes. In this study, we separately conducted meta-analysis of 839 blast-resistant and 308 heat-tolerant QTLs in rice. Consequently, 7054 genes were identified in 67 blast-resistant meta-QTLs with an average interval of 1.00 Mb. Likewise, 6425 genes were obtained in 40 heat-tolerant meta-QTLs with an average interval of 1.49 Mb. Additionally, using differentially expressed genes (DEGs) in the previous research and GO enrichment analysis, 55 DEGs were co-located on the common regions of 16 blast-resistant and 14 heat-tolerant meta-QTLs. Among, OsChib3H-c, OsJAMyb, Pi-k, OsWAK1, OsMT2b, OsTPS3, OsHI-LOX, OsACLA-2 and OsGS2 were the significant candidate genes to be further investigated. These results could provide the gene resources for rice breeding with excellent resistance to these 2 stresses, and help to understand how plants response to the combination stresses of blast fungus and high temperature.
Collapse
Affiliation(s)
| | | | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.T.); (L.C.)
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.T.); (L.C.)
| |
Collapse
|