1
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
2
|
Miranda S, Lagrèze J, Knoll AS, Angeli A, Espley RV, Dare AP, Malnoy M, Martens S. De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo. FRONTIERS IN PLANT SCIENCE 2022; 13:1072765. [PMID: 36589107 PMCID: PMC9800874 DOI: 10.3389/fpls.2022.1072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus × domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. × domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jorge Lagrèze
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
| | - Anne-Sophie Knoll
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Andrea Angeli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mickael Malnoy
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
3
|
Dulak K, Sordon S, Matera A, Kozak B, Huszcza E, Popłoński J. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microb Cell Fact 2022; 21:175. [PMID: 36038906 PMCID: PMC9422121 DOI: 10.1186/s12934-022-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background The regioselective hydroxylation of phenolic compounds, especially flavonoids, is still a bottleneck of classical organic chemistry that could be solved using enzymes with high activity and specificity. Yeast Rhodotorula glutinis KCh735 in known to catalyze the C-8 hydroxylation of flavones and flavanones. The enzyme F8H (flavonoid C8-hydroxylase) is involved in the reaction, but the specific gene has not yet been identified. In this work, we present identification, heterologous expression and characterization of the first F8H ortho-hydroxylase from yeast. Results Differential transcriptome analysis and homology to bacterial monooxygenases, including also a FAD-dependent motif and a GD motif characteristic for flavin-dependent monooxygenases, provided a set of coding sequences among which RgF8H was identified. Phylogenetic analysis suggests that RgF8H is a member of the flavin monooxygenase group active on flavonoid substrates. Analysis of recombinant protein showed that the enzyme catalyzes the C8-hydroxylation of naringenin, hesperetin, eriodyctiol, pinocembrin, apigenin, luteolin, chrysin, diosmetin and 7,4ʹ-dihydroxyflavone. The presence of the C7-OH group is necessary for enzymatic activity indicating ortho-hydroxylation mechanism. The enzyme requires the NADPH coenzyme for regeneration prosthetic group, displays very low hydroxyperoxyflavin decupling rate, and addition of FAD significantly increases its activity. Conclusions This study presents identification of the first yeast hydroxylase responsible for regioselective C8-hydroxylation of flavonoids (F8H). The enzyme was biochemically characterized and applied in in vitro cascade with Bacillus megaterium glucose dehydrogenase reactions. High in vivo activity in Escherichia coli enable further synthetic biology application towards production of rare highly antioxidant compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01899-x.
Collapse
Affiliation(s)
- Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
4
|
Hausjell J, Weissensteiner J, Molitor C, Schlangen K, Spadiut O, Halbwirth H. First purified recombinant CYP75B including transmembrane helix with unexpected high substrate specificity to (2R)-naringenin. Sci Rep 2022; 12:8548. [PMID: 35595763 PMCID: PMC9122903 DOI: 10.1038/s41598-022-11556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Anthochlor pigments (chalcones and aurones) play an important role in yellow flower colourization, the formation of UV-honey guides and show numerous health benefits. The B-ring hydroxylation of chalcones is performed by membrane bound cytochrome P450 enzymes. It was assumed that usual flavonoid 3'-hydroxlases (F3'Hs) are responsible for the 3,4- dihydroxy pattern of chalcones, however, we previously showed that a specialized F3'H, namely chalcone 3-hydroxylase (CH3H), is necessary for the hydroxylation of chalcones. In this study, a sequence encoding membrane bound CH3H from Dahlia variabilis was recombinantly expressed in yeast and a purification procedure was developed. The optimized purification procedure led to an overall recovery of 30% recombinant DvCH3H with a purity of more than 84%. The enzyme was biochemically characterized with regard to its kinetic parameters on various substrates, including racemic naringenin, as well as its enantiomers (2S)-, and (2R)-naringenin, apigenin and kaempferol. We report for the first time the characterization of a purified Cytochrome P450 enzyme from the flavonoid biosynthesis pathway, including the transmembrane helix. Further, we show for the first time that recombinant DvCH3H displays a higher affinity for (2R)-naringenin than for (2S)-naringenin, although (2R)-flavanones are not naturally formed by chalcone isomerase.
Collapse
Affiliation(s)
- Johanna Hausjell
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Julia Weissensteiner
- Research Division Bioresources and Plant Science, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Christian Molitor
- Research Division Bioresources and Plant Science, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Karin Schlangen
- Research Division Bioresources and Plant Science, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Heidi Halbwirth
- Research Division Bioresources and Plant Science, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|