1
|
Xu T, Xu Z, Bai D, Wu F, Shang Y, Li M, Rong G, Gu L. Development and application of a cGPS 20K liquid-phase SNP microarray in Jiaji ducks. Poult Sci 2024; 104:104737. [PMID: 39729728 PMCID: PMC11742303 DOI: 10.1016/j.psj.2024.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024] Open
Abstract
In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS. This microarray showed excellent performance in two production tests. The microarray was used to genotype a population of 236 Jiaji ducks, and the genotyping data were then used for population structure analysis and genome-wide association studies (GWAS) of plumage color phenotypes. According to the population structure analysis, the population of Jiaji ducks could be divided into four subpopulations using genetic distance matrices. Using GWAS analysis, 38 significant SNP loci were identified within a region on chromosome 14 that contained 30 genes. Among them, EDNRB2 and VAMP7 were identified as strong candidate genes for the regulation of plumage color in Jiaji ducks. Two mutations upstream of EDNRB2 were identified as tightly linked to the colorless phenotype. In addition, two KASP markers were designed for the SNP loci associated with EDNRB2 (HIC_SCAFFOLD_14_14984620, HIC_SCAFFOLD_14_15016766). The KASP genotyping results showed strong correlations between different genotypes on the SNP locus HIC_SCAFFOLD_14_15016766 and the plumage phenotype. In conclusion, this independently designed microarray will be useful for large-scale genotyping and can lay the foundation for future screening of mutation loci and functional genes.
Collapse
Affiliation(s)
- Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Zixin Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, PR China
| | - Dingping Bai
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, PR China
| | - Fanghu Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; College of Animal Science, Henan University of Science and Technology, Henan, Luoyang 471900, PR China
| | - Yuanyuan Shang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; College of Animal Science, Henan University of Science and Technology, Henan, Luoyang 471900, PR China
| | - Mao Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Guang Rong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China.
| |
Collapse
|
2
|
Boczkowska M, Puchta-Jasińska M, Bolc P, Moskal K, Puła S, Motor A, Bączek K, Groszyk J, Podyma W. Characterization of the Moroccan Barley Germplasm Preserved in the Polish Genebank as a First Step towards Selecting Forms with Increased Drought Tolerance. Int J Mol Sci 2023; 24:16350. [PMID: 38003539 PMCID: PMC10671370 DOI: 10.3390/ijms242216350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In marginal, arid, and semi-arid areas of Morocco, crops are often exposed to multiple abiotic and biotic stresses that have a major impact on yield. Farmer-maintained Moroccan landraces have been shaped by the impact of very strong selection pressures, gradually adapting to the local ecosystem and obsolete low-input agricultural practices without improvement towards high yield and quality. Considering the increasing threat of drought in Poland, it is necessary to introduce germplasm with tolerance to water deficit into barley breeding programs. The aim of this research was a DArTseq-based genetic characterization of a collection of germplasm of Moroccan origin, conserved in the Polish genebank. The results showed that all conserved landraces have a high level of heterogeneity and their gene pool is different from the material developed by Polish breeders. Based on the analysis of eco-geographical data, locations with extremely different intensities of drought stress were selected. A total of 129 SNPs unique to accessions from these locations were identified. In the neighborhood of the clusters of unique SNPs on chromosomes 5H and 6H, genes that may be associated with plant response to drought stress were identified. The results obtained may provide a roadmap for further research to support Polish barley breeding for increased drought tolerance.
Collapse
Affiliation(s)
- Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Kinga Moskal
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Szymon Puła
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Adrian Motor
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Katarzyna Bączek
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Wiesław Podyma
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
3
|
Amalova A, Yermekbayev K, Griffiths S, Winfield MO, Morgounov A, Abugalieva S, Turuspekov Y. Population Structure of Modern Winter Wheat Accessions from Central Asia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2233. [PMID: 37375859 DOI: 10.3390/plants12122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.
Collapse
Affiliation(s)
- Akerke Amalova
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Kanat Yermekbayev
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Simon Griffiths
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Alexey Morgounov
- Science Department, S. Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Tanaka K, Sugiyama M, Shigita G, Murakami R, Duong TT, Aierken Y, Artemyeva AM, Mamypbelov Z, Ishikawa R, Nishida H, Kato K. Melon diversity on the Silk Road by molecular phylogenetic analysis in Kazakhstan melons. BREEDING SCIENCE 2023; 73:219-229. [PMID: 37404344 PMCID: PMC10316308 DOI: 10.1270/jsbbs.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/16/2023] [Indexed: 07/06/2023]
Abstract
To uncover population structure, phylogenetic relationship, and diversity in melons along the famous Silk Road, a seed size measurement and a phylogenetic analysis using five chloroplast genome markers, 17 RAPD markers and 11 SSR markers were conducted for 87 Kazakh melon accessions with reference accessions. Kazakh melon accessions had large seed with exception of two accessions of weedy melon, Group Agrestis, and consisted of three cytoplasm types, of which Ib-1/-2 and Ib-3 were dominant in Kazakhstan and nearby areas such as northwestern China, Central Asia and Russia. Molecular phylogeny showed that two unique genetic groups, STIa-2 with Ib-1/-2 cytoplasm and STIa-1 with Ib-3 cytoplasm, and one admixed group, STIAD combined with STIa and STIb, were prevalent across all Kazakh melon groups. STIAD melons that phylogenetically overlapped with STIa-1 and STIa-2 melons were frequent in the eastern Silk Road region, including Kazakhstan. Evidently, a small population contributed to melon development and variation in the eastern Silk Road. Conscious preservation of fruit traits specific to Kazakh melon groups is thought to play a role in the conservation of Kazakh melon genetic variation during melon production, where hybrid progenies were generated through open pollination.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Mitsuhiro Sugiyama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Gentaro Shigita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima Naka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Ryoma Murakami
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Thanh-Thuy Duong
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Hue City, Vietnam
| | - Yasheng Aierken
- Center for Hami Melon, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Anna M Artemyeva
- All-Russian Institute of Plant Genetic Resources on the name of N.I.Vavilov (VIR), 42-44 Bolshaya Morskaya Street, Saint Petersburg 190000, Russian Federation
| | - Zharas Mamypbelov
- Kazakhstan Research Institute of Potato and Vegetable Growing LLC, 1 Nauryz Street, Karasay, Almaty 040917, Kazakhstan
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima Naka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima Naka, Kita-ku, Okayama, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Hudzenko VM, Buniak NM, Tsentylo LV, Demydov OA, Fedorenko IV, Fedorenko MV, Ishchenko VA, Kozelets HM, Khudolii LV, Lashuk SO, Syplyva NO. Evaluation of grain yield performance and its stability in various spring barley accessions under condition of different agroclimatic zones of Ukraine. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Two extremely urgent problems of biological and agronomic research nowadays are ensuring an optimal balance between usage of natural resources to meet rapidly growing needs for food production and preservation of biodiversity. It is also important to extend the genetic diversity of the main crop varieties in agroecosystems. At the same time, modern varieties should be characterized by a combination of high yield and preserving yield stability under variable conditions. Solving the outlined tasks requires comprehensive research and involvement in breeding process of the genetical diversity concentrated in genebanks of the world. Barley (Hordeum vulgare L.) is one of the most important crops that satisfy the various needs of humanity. In respect to this, in 2020–2022, a multi-environment trial was conducted in three agroclimatic zones of Ukraine (Forest-Steppe, Polissia, and Northern Steppe). We studied 44 spring barley collection accessions of different ecological and geographical origin, different subspecies and groups of botanical varieties which were obtained from the National Center for Plant Genetic Resources of Ukraine. Statistical indices (Hom, Sc) and graphical models (GGE biplot, AMMI) were used to interpret the yield performance and its stability. Both individual ecological sites in different years and combinations of different sites and years of trials were characterized for productivity, discriminating power and representativeness. The environments differed quite strongly among themselves in terms of these indicators. It was established that most of the genotypes were characterized by higher adaptability to individual environmental conditions (stability in different years), compared to adaptability for all agroclimatic zones (wide adaptation). A strong cross-over genotype by environment interaction was found for most studied accessions. Nevertheless, both genotypes with very high stability in only one agroclimatic zone (Amil (UKR), Gateway (CAN)) and genotypes with a combination of high adaptability to one or two ecological niches and relatively higher wide adaptability (Stymul (UKR), Ly-1064 (UKR), Rannij (KAZ), Shedevr (UKR), and Arthur (CZE)) were identified. There were also the accessions which did not show maximum performance in the individual sites, but had relatively higher wide adaptability (Ly-1059 (UKR), Ly-1120 (UKR), Diantus (UKR), and Danielle (CZE)). In general, the naked barley genotypes were inferior to the covered ones in terms of yield potential and wide adaptability, but at the same time, some of them (CDC ExPlus (CAN), CDC Gainer (CAN), and Roseland (CAN)), accordingly to the statistical indicators, had increased stability in certain ecological sites. Among naked barley accessions relatively better wide adaptability according to the graphical analysis was found in the accession CDC McGwire (CAN), and by the statistical parameters CDC ExPlus (CAN) was better than standard. The peculiarities of yield manifestation and its variability in different spring barley genotypes in the multi-environment trial revealed in this study will contribute to the complementation and deepening of existing data in terms of the genotype by environment interaction. Our results can be used in further studies for developing spring barley variety models both with specific and wide adaptation under conditions of different agroclimatic zones of Ukraine. The disitnguished accessions of different origin and botanical affiliation are recommended for creating a new breeding material with the aim of simultaneously increasing yield potential and stability, as well as widening the genetic basis of spring barley varieties.
Collapse
|
6
|
Dziurdziak J, Podyma W, Bujak H, Boczkowska M. Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. Int J Mol Sci 2022; 23:4553. [PMID: 35562944 PMCID: PMC9099733 DOI: 10.3390/ijms23094553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to investigate the diversity and population structure of 83 spring barley (Hordeum vulgare L.) cultivars, which corresponded to 120 years of this crop's breeding in Poland. The analysis was based on 11,655 DArTseq-derived SNPs evenly distributed across seven barley chromosomes. Five groups were assigned in the studied cultivars according to the period of their breeding. A decrease in observed heterozygosity within the groups was noted along with the progress in breeding, with a simultaneous increase in the inbreeding coefficient value. As a result of breeding, some of the unique allelic variation present in old cultivars was lost, but crosses with foreign materials also provided new alleles to the barley gene pool. It is important to mention that the above changes affected different chromosomes to varying degrees. The internal variability of the cultivars ranged from 0.011 to 0.236. Internal uniformity was lowest among the oldest cultivars, although some highly homogeneous ones were found among them. This is probably an effect of genetic drift or selection during their multiplications and regenerations in the period from breeding to the time of analysis. The population genetic structure of the studied group of cultivars appears to be quite complex. It was shown that their genetic makeup consists of as many as eleven distinct gene pools. The analysis also showed traces of directed selection on chromosomes 3H and 5H. Detailed data analysis confirmed the presence of duplicates for 11 cultivars. The performed research will allow both improvement of the management of barley genetic resources in the gene bank and the reuse of this rich and forgotten variability in breeding programs and research.
Collapse
Affiliation(s)
- Joanna Dziurdziak
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Wiesław Podyma
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Henryk Bujak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland;
- Research Center for Cultivar Testing (COBORU), 63-022 Słupia Wielka, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| |
Collapse
|
7
|
Qi H, Sun X, Yan W, Ye H, Chen J, Yu J, Jun D, Wang C, Xia T, Chen X, Li D, Zheng D. Genetic relationships and low diversity among the tea-oil Camellia species in Sect . Oleifera, a bulk woody oil crop in China. FRONTIERS IN PLANT SCIENCE 2020; 13:996731. [PMID: 36247558 PMCID: PMC9563498 DOI: 10.3389/fpls.2022.996731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Tea-oil Camellia is one of the four woody oil crops in the world and has high ecological, economic and medicinal values. However, there are great differences in the classification and merging of tea-oil Camellia Sect. Oleifera species, which brings difficulties to the innovative utilization and production of tea-oil Camellia resources. Here, ISSR, SRAP and chloroplast sequence markers were analyzed in 18 populations of tea-oil Camellia Sect. Oleifera species to explore their phylogenetic relationships and genetic diversity. The results showed that their genetic diversity were low, with mean H and π values of 0.16 and 0.00140, respectively. There was high among-population genetic differentiation, with ISSR and SRAP markers showing an Fst of 0.38 and a high Nm of 1.77 and cpDNA markers showing an Fst of 0.65 and a low Nm of 0.27. The C. gauchowensis, C. vietnamensis and Hainan Island populations formed a single group, showing the closest relationships, and supported being the same species for them with the unifying name C. drupifera and classifying the resources on Hainan Island as C. drupifera. The tea-oil Camellia resources of Hainan Island should be classified as a special ecological type or variety of C. drupifera. However, cpDNA marker-based STRUCTURE analysis showed that the genetic components of the C. osmantha population formed an independent, homozygous cluster; hence, C. osmantha should be a new species in Sect. Oleifera. The C. oleifera var. monosperma and C. oleifera populations clustered into two distinct clades, and the C. oleifera var. monosperma populations formed an independent cluster, accounting for more than 99.00% of its genetic composition; however, the C. oleifera populations contained multiple different cluster components, indicating that C. oleifera var. monosperma significantly differs from C. oleifera and should be considered the independent species C. meiocarpa. Haplotype analysis revealed no rapid expansion in the tested populations, and the haplotypes of C. oleifera, C. meiocarpa and C. osmantha evolved from those of C. drupifera. Our results support the phylogenetic classification of Camellia subgenera, which is highly significant for breeding and production in tea-oil Camellia.
Collapse
Affiliation(s)
- Huasha Qi
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuxiu Sun
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wuping Yan
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-Tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning, China
| | - Jiali Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Dai Jun
- Qionghai Tropical Crop Service Center, Qionghai, China
| | - Chunmei Wang
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tengfei Xia
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xuan Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Dongliang Li
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daojun Zheng
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|