1
|
Louçano B, Maletti S, Timóteo H, Figueiredo JP, Osório N, Barroca MJ, da Silva AM, Pereira T, Caseiro A. Assessing Sarcocornia as a Salt Substitute: Effects on Lipid Profile and Gelatinase Activity. Nutrients 2024; 16:929. [PMID: 38612961 PMCID: PMC11013238 DOI: 10.3390/nu16070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.
Collapse
Affiliation(s)
- Beatriz Louçano
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - Sara Maletti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Policlinico, via del Pozzo, 7141124 Modena, Italy;
| | - Helena Timóteo
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - João Paulo Figueiredo
- Polytechnic Institute of Coimbra, Coimbra Health School, Medical Sciences, Socials and Humans, Rua 5 de Outubro, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Telmo Pereira
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Clinical Physiology, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Ramírez E, Rodríguez N, de la Fuente V. Arthrocnemum Moq.: Unlocking Opportunities for Biosaline Agriculture and Improved Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2024; 13:496. [PMID: 38498449 PMCID: PMC10892625 DOI: 10.3390/plants13040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
(1) Background: This study provides novel insights into the elemental content and biomineralization processes of two halophytic species of the genus Arthrocnemum Moq. (A. macrostachyum and A. meridionale). (2) Methods: Elemental content was analyzed using ICP-MS, while biominerals were detected through electron microscopy (SEM and TEM) and X-ray diffraction. (3) Results: The elemental content showed significant concentrations of macronutrients (sodium, potassium, magnesium, and calcium) and micronutrients, especially iron. Iron was consistently found as ferritin in A. macrostachyum chloroplasts. Notably, A. macrostachyum populations from the Center of the Iberian Peninsula exhibited exceptionally high magnesium content, with values that exceeded 40,000 mg/kg d.w. Succulent stems showed elemental content consistent with the minerals identified through X-ray diffraction analysis (halite, sylvite, natroxalate, and glushinskite). Seed analysis revealed elevated levels of macro- and micronutrients and the absence of heavy metals. Additionally, the presence of reduced sodium chloride crystals in the seed edges suggested a mechanism to mitigate potential sodium toxicity. (4) Conclusions: These findings highlight the potential of Arthrocnemum species as emerging edible halophytes with nutritional properties, particularly in Western European Mediterranean territories and North Africa. They offer promising prospects for biosaline agriculture and biotechnology applications.
Collapse
Affiliation(s)
- Esteban Ramírez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Vicenta de la Fuente
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| |
Collapse
|
3
|
Higbee J, Brownmiller C, Solverson P, Howard L, Carbonero F. Polyphenolic profiles of a variety of wild berries from the Pacific Northwest region of North America. Curr Res Food Sci 2023; 7:100564. [PMID: 37664004 PMCID: PMC10474376 DOI: 10.1016/j.crfs.2023.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Polyphenols have been extensively profiled and quantified in commercially grown berries, but similar information is sparsely available for wild berries. Because polyphenolic contents are inherently associated with berries health benefits, determining phenolic profiles is an important step for strategizing potential uses by the industry and for health and nutrition outcomes. Here, we profiled phenolic compounds in wild berries commonly encountered and harvested in the Pacific Northwest region of North America. Huckleberries (Vaccinium membranaceum) of varying phenotypes were found to be comparable to related blueberries in terms of general phenolic classes composition. However, all huckleberries exhibited markedly high levels of cyanidins, and delphinidins or peonidins were also higher in specific phenotypes. Wild black elderberries (Sambucus nigra spp. Canadensis) were found to have remarkably high phenolic, especially anthocyanins, in line with reports from cultivated elderberries. Saskatoon serviceberries (Amelanchier alnifolia) were found to exhibit high polyphenol content, but with a less diverse profile dominated by quercetin. The most intriguing berry may be the Oregon grape (Mahonia Aquifolium) being the only one exhibiting more than one g of polyphenols per 100 g; as well as a remarkably even distribution of the different anthocyanin classes. All colored wild berries were found to have at minimum comparable total phenolic contents when compared to cultivated and other wild berries, suggesting they should exhibit comparable human health benefits such as antioxidant and metabolic syndrome preventative potential described for these other berries. Overall, our data represents a valuable resource to explore the potential to valorize wild berry species for their specific phenolic profiles and predicted nutritional and health properties. With repeated phenolic profiling to better understand the impact of the environment, the wild berries described here hold promises both as food ingredient applications as well as valuable complement for healthy dietary patterns.
Collapse
Affiliation(s)
- Jerome Higbee
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
5
|
Grigore MN, Vicente O. Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020221. [PMID: 36678935 PMCID: PMC9863273 DOI: 10.3390/plants12020221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 05/27/2023]
Abstract
Halophytes, wild plants adapted to highly saline natural environments, represent extremely useful-and, at present, underutilised-experimental systems with which to investigate the mechanisms of salt tolerance in plants at the anatomical, physiological, biochemical and molecular levels. They can also provide biotechnological tools for the genetic improvement of salt tolerance in our conventional crops, such as salt tolerance genes or salt-induced promoters. Furthermore, halophytes may constitute the basis of sustainable 'saline agriculture' through commercial cultivation after some breeding to improve agronomic traits. All these issues are relevant in the present context of climate emergency, as soil salinity is-together with drought-the most critical environmental factor in reducing crop yield worldwide. In fact, climate change represents the most serious challenge for agricultural production and food security in the near future. Several of the topics mentioned above-mainly referring to basic studies on salt tolerance mechanisms-are addressed in the articles published within this Special Issue.
Collapse
Affiliation(s)
- Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Ramírez E, Chaâbene Z, Hernández-Apaolaza L, Rekik M, Elleuch A, de la Fuente V. Seed priming to optimize germination in Arthrocnemum Moq. BMC PLANT BIOLOGY 2022; 22:527. [PMID: 36376813 PMCID: PMC9661790 DOI: 10.1186/s12870-022-03893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Seed germination and seedling growth constitute the first stage of a plant's life cycle for crop establishment. Arthrocnemum Moq. is a halophyte of the subfamily Salicornioideae (Amaranthaceae), which could be recognized in the foreseeable future as an emerging candidate in applied biosaline agricultural programs, mainly due to the large biomass it represents in coastal and inland saltmarshes, in addition to its interesting nutritional and pharmacological properties. However, to ensure their subsequent use as a crop, it is necessary to optimize their germination through appropriate seed priming treatments. The main goal of this work was to seek the optimization of Arthrocnemum germination process using different pretreatments: exposure to sodium chloride (100 to 1200 mM) in the dark and its subsequent transferred to distilled water separately and together with the combination of pH (5, 7, 9), salinity (0, 100, 200 mM NaCl), and iron conditions (0, 200, 400 µM FeSO4). The experiments were tested on six samples of two different species: A. meridionale (from Tunisia) and A. macrostachyum (from Spain). RESULTS Salinity priming of seeds for 15 days in darkness improved germination percentages by almost 25% at 600 mM NaCl, in both Tunisian and Spanish species. However, keeping seeds at different salt concentrations for 30 days produced higher improvement percentages at lower concentrations in A. meridionale (100-200 mM NaCl), while in A. macrostachyum the highest improvement percentages were obtained at 600 mM NaCl (percentage improvement of 47%). When the dark time period is reduced to 5 days at higher salt concentrations, the greater germination percentages were reached in all the samples at the concentration of 800 mM NaCl, increasing the improvement of germination between 17 and 50%. Finally, the conditions of pH = 7, pretreatment in darkness at 800 mM NaCl and 400 µM or iron, turned out to be an effective medium for seed germination. CONCLUSIONS Therefore, before using Arthrocnemum seeds in applied biotechnological programs, a seed priming treatment based on prior exposure to high salt concentrations (600-1000 mM NaCl) is recommended in order to maximize germination percentages.
Collapse
Affiliation(s)
- Esteban Ramírez
- Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Zayneb Chaâbene
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Mariem Rekik
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Vicenta de la Fuente
- Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|