1
|
Jin W, Cheng L, Liu C, Liu H, Jiao Q, Wang H, Deng Z, Seth CS, Guo H, Shi Y. Cadmium negatively affects the growth and physiological status and the alleviation effects by exogenous selenium in silage maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21646-21658. [PMID: 38396179 DOI: 10.1007/s11356-024-32557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Increasing soil cadmium (Cd) contamination is a serious threat to human food health and safety. In order to reduce Cd uptake and Cd toxicity in silage maize, hydroponic tests were conducted to investigate the effect of exogenous Cd on the toxicity of silage maize in this study. In the study, a combination of Cd (5, 20, 50, 80, and 10 μM) treatments was applied in a hydroponic system. With increasing Cd concentration, Cd significantly inhibited the total root length (RL), root surface area (SA), root volume (RV), root tip number (RT), and branching number (RF) of maize seedlings, which were reduced by 28.1 to 71.3%, 20.2 to 64.9%, 11.2 to 56.5%, 43.7 to 63.4%, and 38.2 to 72.6%, respectively. The excessive Cd accumulation inhibited biomass accumulation and reduced silage maize growth, photosynthesis, and chlorophyll content and activated the antioxidant systems, including increasing lipid peroxidation and stimulating catalase (CAT) and peroxidase (POD), but reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the root. Besides, selenium (Se) significantly decreased the Cd concentration of the shoot and root by 27.1% and 35.1% under Cd50, respectively. Our results reveal that exogenously applied Cd reduced silage maize growth and impaired photosynthesis. Whereas silage maize can tolerate Cd by increasing the concentration of ascorbate and glutathione and activating the antioxidant defense system, the application of exogenous selenium significantly reduced the content of Cd in silage maize.
Collapse
Affiliation(s)
- Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lan Cheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chunyan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haoyang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaolong Deng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Shi
- College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Mi Z, Liu P, Du L, Han T, Wang C, Fan X, Liu H, He S, Wu J. The Influence of Cadmium on Fountain Grass Performance Correlates Closely with Metabolite Profiles. PLANTS (BASEL, SWITZERLAND) 2023; 12:3713. [PMID: 37960069 PMCID: PMC10649124 DOI: 10.3390/plants12213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
The relationship between metabolite changes and biological endpoints in response to cadmium (Cd) stress remains unclear. Fountain grass has good Cd enrichment and tolerance abilities and is widely used in agriculture and landscaping. We analyzed the metabolic responses by detecting the metabolites through UPLC-MS and examined the relationships between metabolite changes and the characteristics of morphology and physiology to different Cd stress in fountain grass. Our results showed that under Cd stress, 102 differential metabolites in roots and 48 differential metabolites in leaves were detected, with 20 shared metabolites. Under Cd stress, most of the carbohydrates in leaves and roots decreased, which contributed to the lowered leaf/root length and fresh weight. In comparison, most of the differential amino acids and lipids decreased in the leaves but increased in the roots. Almost all the differential amino acids in the roots were negatively correlated with root length and root fresh weight, while they were positively correlated with malondialdehyde content. However, most of the differential amino acids in the leaves were positively correlated with leaf length and leaf fresh weight but negatively correlated with malondialdehyde content. Metabolic pathway analysis showed that Cd significantly affects seven and eight metabolic pathways in the leaves and roots, respectively, with only purine metabolism co-existing in the roots and leaves. Our study is the first statement on metabolic responses to Cd stress and the relationships between differential metabolites and biological endpoints in fountain grass. The coordination between various metabolic pathways in fountain grass enables plants to adapt to Cd stress. This study provides a comprehensive framework by explaining the metabolic plasticity and Cd tolerance mechanisms of plants.
Collapse
Affiliation(s)
- Zhaorong Mi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Pinlin Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Lin Du
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huichao Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Songlin He
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
3
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|