1
|
Sun S, Zhao X, Shi Z, He F, Qi G, Li X, Niu Y, Zhou W. Exogenous 24-Epibrassinolide Improves Low-Temperature Tolerance of Maize Seedlings by Influencing Sugar Signaling and Metabolism. Int J Mol Sci 2025; 26:585. [PMID: 39859301 PMCID: PMC11765667 DOI: 10.3390/ijms26020585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Low-temperature (LT) stress seriously affects the distribution, seedling survival, and grain yield of maize. At the seedling emergence stage, maize's coleoptile is one of the most sensitive organs in sensing LT signaling and, in general, it can envelop young leaves to protect them from LT damage. In addition, brassinolides (BRs) have been shown to enhance LT tolerance from various species, but the effects of BRs on coleoptiles in maize seedlings under LT stress are unclear. Therefore, in this study, the pre-cultured coleoptiles of Zheng58 seedlings were treated with or without 2.0 μM 24-epibrassinolide (EBR) at 25 °C and 10 °C environments for five days to analyze their physiological and transcriptomic changes. Physiological analysis showed that a 10°C LT stress increased the content of glucose (0.43 mg g-1 FW), sucrose (0.45 mg g-1 FW), and starch (0.76 mg g-1 FW) of Zheng58 coleoptiles compared to a 25°C environment. After the coleoptiles were exposed to a 2.0 μM EBR application under 10°C temperature for five days, the contents of these three sugars continued to increase, and reached 2.68 mg g-1 FW, 4.64 mg g-1 FW, and 9.27 mg g-1 FW, respectively, indicating that sugar signaling and metabolism played key roles in regulating LT tolerance in the coleoptiles of maize seedlings. Meanwhile, a transcriptome analysis showed that 84 and 15 differentially expressed genes (DEGs) were enriched in the sucrose and starch metabolism and photosynthesis pathways, respectively, and multiple DEGs involved in these pathways were significantly up-regulated under LT stress and EBR stimulation. Further analysis speculated that the four DEGs responsible for sucrose-phosphate synthetase (SPS, i.e., Zm00001d048979, probable sucrose-phosphate synthase 5 and Zm00001d012036, sucrose-phosphate synthase 1), sucrose synthase (SUS, Zm00001d029091, sucrose synthase 2 and Zm00001d029087, sucrose synthase 4) were crucial nodes that could potentially link photosynthesis and other unknown pathways to form the complex interaction networks of maize LT tolerance. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous EBR in enhancing LT tolerance of maize seedlings and identified potential candidate genes to be used for LT tolerance breeding in maize.
Collapse
Affiliation(s)
- Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| |
Collapse
|
2
|
Mahmood Ur Rehman M, Liu J, Nijabat A, Alsudays IM, Saleh MA, Alamer KH, Attia H, Ziaf K, Zaman QU, Amjad M. Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings. BMC PLANT BIOLOGY 2024; 24:606. [PMID: 38926658 PMCID: PMC11201870 DOI: 10.1186/s12870-024-05292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.
Collapse
Affiliation(s)
- Muhammad Mahmood Ur Rehman
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Jizhan Liu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan
| | - Ibtisam M Alsudays
- Department of Biology, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Muneera A Saleh
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
3
|
Sheteiwy MS, El-Sawah AM, Kobae Y, Basit F, Holford P, Yang H, El-Keblawy A, Abdel-Fattah GG, Wang S, Araus JL, Korany SM, Alsherif EA, AbdElgawad H. The effects of microbial fertilizers application on growth, yield and some biochemical changes in the leaves and seeds of guar (Cyamopsis tetragonoloba L.). Food Res Int 2023; 172:113122. [PMID: 37689887 DOI: 10.1016/j.foodres.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Yoshihiro Kobae
- Laboratory of Crop Nutrition, Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido, Ebetsu 069-8501, Japan
| | - Farwa Basit
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, NSW 2751, Penrith, Australia
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada G Abdel-Fattah
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000 Linyi, China
| | - José Luis Araus
- Unit of Plant Physiology, Department of Plant Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Zhou C, Yu S, Zhang H, Li F. Physiological and biochemical responses of Isatis indigotica to deficit irrigation in a cold and arid environment. FRONTIERS IN PLANT SCIENCE 2023; 13:1094158. [PMID: 36714710 PMCID: PMC9878612 DOI: 10.3389/fpls.2022.1094158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Water shortage and wastage are critical challenges to sustainable agricultural development, especially in arid and semiarid regions worldwide. Isatis indigotica (woad), as a traditional Chinese herb, was planted in a large area in a cold and arid environment of Hexi. Regulated deficit irrigation can reduce the growth of some vegetative organs by changing the accumulation and distribution of photosynthetic products in crops, thus increasing the economic yield of crops. In agricultural production, crop productivity may be improved by mulched drip irrigation and deficit irrigation. Hence, a field experiment was conducted to investigate the responses of photosynthesis, malondialdehyde, osmotic regulators, antioxidant enzyme activities, and the yield of woad to water deficit at different growth stages. The growth stage of woad was divided in four stages: seedling, vegetative growth, fleshy root growth, and fleshy root maturity. During vegetative growth, fleshy root growth, and fleshy root maturity, three water gradients were set for plants with mild (65-75% in field water capacity, FC), moderate (55-65% in FC), and severe (45-55% in FC) deficits, respectively. In contrast, an adequate water supply (75-85% in FC) during the growth period was designed as the control (CK). The net photosynthetic rate (Pn), transpiration rate, and stomatal conductance of woad significantly decreased (P< 0.05) by moderate and severe water deficits. Still, rehydration after the water deficit could produce a noticeable compensation effect. In contrast, malondialdehyde and proline accumulation significantly increased under moderate and severe water deficits. At the same time, the superoxide dismutase, peroxidase, and catalase all had high activities (increased significantly by 19.87-39.28%, 19.91-34.26%, and 10.63-16.13% compared with CK, respectively), but yields were substantially lower, compared to CK. Additionally, the net photosynthetic rate was negatively correlated with antioxidant enzyme activity. The economic yield of plants subjected to continuous mild water deficit during both vegetative and fleshy root growth was not significantly different from that in CK. Still, the water use efficiency improved significantly. Therefore, the continuous mild water deficit during vegetative and fleshy root growth could improve the physiological and biochemical mechanisms of the plant, representing an optimal irrigation strategy for woad in cold and arid areas.
Collapse
Affiliation(s)
- Chenli Zhou
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Shouchao Yu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Hengjia Zhang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Fuqiang Li
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Abdulmajeed AM, Alharbi BM, Alharby HF, Abualresh AM, Badawy GA, Semida WM, Rady MM. Simultaneous Action of Silymarin and Dopamine Enhances Defense Mechanisms Related to Antioxidants, Polyamine Metabolic Enzymes, and Tolerance to Cadmium Stress in Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:3069. [PMID: 36432798 PMCID: PMC9692805 DOI: 10.3390/plants11223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.
Collapse
Affiliation(s)
- Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani M. Abualresh
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghada A. Badawy
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
6
|
Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity. Microbiol Res 2022; 266:127254. [DOI: 10.1016/j.micres.2022.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/11/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
|
7
|
Understanding and Comprehensive Evaluation of Cold Resistance in the Seedlings of Multiple Maize Genotypes. PLANTS 2022; 11:plants11141881. [PMID: 35890515 PMCID: PMC9320912 DOI: 10.3390/plants11141881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022]
Abstract
Maize is a cold-sensitive crop, and it exhibits severe retardation of growth and development when exposed to cold snaps during and right after seedling emergence. Although different agronomic, physiological, and molecular approaches have been tried to overcome the problems related to cold stress in recent years, the mechanisms causing cold resistance in maize are still unclear. Screening and breeding of varieties for cold resistance may be a sustainable option to boost maize production under low-temperature environments. Herein, seedlings of 39 different maize genotypes were treated under both 10 °C low temperature and 22 °C normal temperature conditions for 7 days, to assess the changes in seven growth parameters, two membrane characteristics, two reactive oxygen species (ROS) levels, and four antioxidant enzymes activities. The changes in ten photosynthetic performances, one osmotic substance accumulation, and three polyamines (PAs) metabolisms were also measured. Results indicated that significant differences among genotypes, temperature treatments, and their interactions were found in 29 studied traits, and cold–stressed seedlings were capable to enhance their cold resistance by maintaining high levels of membrane stability index (66.07%); antioxidant enzymes activities including the activity of superoxide dismutase (2.44 Unit g−1 protein), peroxidase (1.65 Unit g−1 protein), catalase (0.65 μM min−1 g−1 protein), and ascorbate peroxidase (5.45 μM min−1 g−1 protein); chlorophyll (Chl) content, i.e., Chl a (0.36 mg g−1 FW) and Chl b (0.40 mg g−1 FW); photosynthetic capacity such as net photosynthetic rate (5.52 μM m−2 s−1) and ribulose 1,5–biphosphate carboxylase activity (6.57 M m−2 s−1); PAs concentration, mainly putrescine (274.89 nM g−1 FW), spermidine (52.69 nM g−1 FW), and spermine (45.81 nM g−1 FW), particularly under extended cold stress. Importantly, 16 traits can be good indicators for screening of cold–resistant genotypes of maize. Gene expression analysis showed that GRMZM2G059991, GRMZM2G089982, GRMZM2G088212, GRMZM2G396553, GRMZM2G120578, and GRMZM2G396856 involved in antioxidant enzymes activity and PAs metabolism, and these genes may be used for genetic modification to improve maize cold resistance. Moreover, seven strong cold–resistant genotypes were identified, and they can be used as parents in maize breeding programs to develop new varieties.
Collapse
|
8
|
Kazerooni EA, Al-Sadi AM, Rashid U, Kim ID, Kang SM, Lee IJ. Salvianolic Acid Modulates Physiological Responses and Stress-Related Genes That Affect Osmotic Stress Tolerance in Glycine max and Zea mays. FRONTIERS IN PLANT SCIENCE 2022; 13:904037. [PMID: 35783988 PMCID: PMC9240475 DOI: 10.3389/fpls.2022.904037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 05/23/2023]
Abstract
Drought is a serious threat worldwide to soybean and maize production. This study was conducted to discern the impact of salvianolic acid treatment on osmotic-stressed soybean (Glycine max L.) and maize (Zea mays L.) seedlings from the perspective of physiochemical and molecular reactions. Examination of varied salvianolic acid concentrations (0, 0.1, 1, 5, 10, and 25 μM) on soybean and maize seedling growth confirmed that the 0.1 and 1 μM concentrations, respectively, showed an improvement in agronomic traits. Likewise, the investigation ascertained how salvianolic acid application could retrieve osmotic-stressed plants. Soybean and maize seedlings were irrigated with water or 25% PEG for 8 days. The results indicated that salvianolic acid application promoted the survival of the 39-day-old osmotic-stressed soybean and maize plants. The salvianolic acid-treated plants retained high photosynthetic pigments, protein, amino acid, fatty acid, sugar, and antioxidant contents, and demonstrated low hydrogen peroxide and lipid contents under osmotic stress conditions. Gene transcription pattern certified that salvianolic acid application led to an increased expression of GmGOGAT, GmUBC2, ZmpsbA, ZmNAGK, ZmVPP1, and ZmSCE1d genes, and a diminished expression of GmMIPS2, GmSOG1, GmACS, GmCKX, ZmPIS, and ZmNAC48 genes. Together, our results indicate the utility of salvianolic acid to enhance the osmotic endurance of soybean and maize plants.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Malaysia
| | - Il-Doo Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|