1
|
Ma C, Pei ZQ, Zhu Q, Chai CH, Xu TT, Dong CY, Wang J, Zheng S, Zhang TG. Melatonin-mediated low-temperature tolerance of cucumber seedlings requires Ca 2+/CPKs signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108962. [PMID: 39067105 DOI: 10.1016/j.plaphy.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 μM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 μM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.
Collapse
Affiliation(s)
- Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zi-Qi Pei
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Qiao Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cai-Hong Chai
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ting-Ting Xu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cui-Yun Dong
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Teng-Guo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Zhang J, Liu Y, Zhou Z, Yang L, Xue Z, Li Q, Cai B. Genome-Wide Characterization of Fructose 1,6-Bisphosphate Aldolase Genes and Expression Profile Reveals Their Regulatory Role in Abiotic Stress in Cucumber. Int J Mol Sci 2024; 25:7687. [PMID: 39062929 PMCID: PMC11276831 DOI: 10.3390/ijms25147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The fructose-1,6-bisphosphate aldolase (FBA) gene family exists in higher plants, with the genes of this family playing significant roles in plant growth and development, as well as response to abiotic stresses. However, systematic reports on the FBA gene family and its functions in cucumber are lacking. In this study, we identified five cucumber FBA genes, named CsFBA1-5, that are distributed randomly across chromosomes. Phylogenetic analyses involving these cucumber FBAs, alongside eight Arabidopsis FBA proteins and eight tomato FBA proteins, were conducted to assess their homology. The CsFBAs were grouped into two clades. We also analyzed the physicochemical properties, motif composition, and gene structure of the cucumber FBAs. This analysis highlighted differences in the physicochemical properties and revealed highly conserved domains within the CsFBA family. Additionally, to explore the evolutionary relationships of the CsFBA family further, we constructed comparative syntenic maps with Arabidopsis and tomato, which showed high homology but only one segmental duplication event within the cucumber genome. Expression profiles indicated that the CsFBA gene family is responsive to various abiotic stresses, including low temperature, heat, and salt. Taken together, the results of this study provide a theoretical foundation for understanding the evolution of and future research into the functional characterization of cucumber FBA genes during plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| | - Bingbing Cai
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| |
Collapse
|
3
|
Chen M, Dai S, Chen D, Zhu P, Feng N, Zheng D. Comparative Analysis Highlights Uniconazole's Efficacy in Enhancing the Cold Stress Tolerance of Mung Beans by Targeting Photosynthetic Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1885. [PMID: 39065416 PMCID: PMC11280120 DOI: 10.3390/plants13141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Soybean (Glycine max) and mung bean (Vigna radiata) are key legumes with global importance, but their mechanisms for coping with cold stress-a major challenge in agriculture-have not been thoroughly investigated, especially in a comparative study. This research aimed to fill this gap by examining how these two major legumes respond differently to cold stress and exploring the role of uniconazole, a potential stress mitigator. Our comprehensive approach involved transcriptomic and metabolomic analyses, revealing distinct responses between soybean and mung bean under cold stress conditions. Notably, uniconazole was found to significantly enhance cold tolerance in mung bean by upregulating genes associated with photosynthesis, while its impact on soybean was either negligible or adverse. To further understand the molecular interactions, we utilized advanced machine learning algorithms for protein structure prediction, focusing on photosynthetic pathways. This enabled us to identify LOC106780309 as a direct binding target for uniconazole, confirmed through isothermal titration calorimetry. This research establishes a new comparative approach to explore how soybean and mung bean adapt to cold stress, offers key insights to improve the hardiness of legumes against environmental challenges, and contributes to sustainable agricultural practices and food security.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
| | - Peiyi Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
4
|
Zhu W, Li R, Guo X, Li J, Muhammad N, Qi C, Gao M, Wang C, Liu M, Tang G, Sadeghnezhad E, Liu Z, Wang L. Integrated anatomical structure, physiological, and transcriptomic analyses to identify differential cold tolerance responses of Ziziphus jujuba mill. 'Yueguang' and its autotetraploid 'Hongguang'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108679. [PMID: 38714127 DOI: 10.1016/j.plaphy.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cold stress is a limiting stress factor that limits plant distribution and development; however, polyploid plants have specific characteristics such as higher resistance to abiotic stress, especially cold stress, that allow them to overcome this challenge. The cultivated cultivar Ziziphus jujuba Mill. 'Yueguang' (YG) and its autotetraploid counterpart 'Hongguang' (HG) exhibit differential cold tolerance. However, the underlying molecular mechanism and methods to enhance their cold tolerance remain unknown. Anatomical structure and physiological analysis indicated YG had a higher wood bark ratio, and xylem ratio under cold treatment compared to HG. However, the half-lethal temperature (LT50), cortex ratio, and malondialdehyde (MDA) content were significantly decreased in YG than HG, which indicated YG was cold tolerant than HG. Transcriptome analysis showed that 2084, 1725, 2888, and 2934 differentially expressed genes (DEGs) were identified in HC vs YC, H20 vs Y20, Y20 vs YC, and H20 vs HC treatment, respectively. Meanwhile, KEGG enrichment analysis of DEGs showed that several metabolic pathways, primarily plant hormone signal transduction and the MAPK signaling pathway, were involved in the differential regulation of cold tolerance between YG and HG. Furthermore, exogenous abscisic acid (ABA) and brassinolide (BR) treatments could improve their cold tolerance through increased SOD and POD activities, decreased relative electrical conductivity, and MDA content. All of these findings suggested that plant hormone signal transduction, particularly ABA and BR, might have an important role in the regulation of differential cold tolerance between YG and HG, laying the foundation for further improving cold tolerance in jujube and examining the molecular mechanisms underlying differences in cold tolerance among different ploidy cultivars.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ruimei Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xiaoxue Guo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Noor Muhammad
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chaofeng Qi
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chenyu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Gangliang Tang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Teheran, Iran
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
5
|
Wu H, Wan X, Niu J, Cao Y, Wang S, Zhang Y, Guo Y, Xu H, Xue X, Yao J, Zhu C, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low-temperature stress. J Nanobiotechnology 2024; 22:268. [PMID: 38764056 PMCID: PMC11103931 DOI: 10.1186/s12951-024-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Faculty of Medicine, Ludwig- Maximilians-University München, Munich, 81377, Germany
| | - Yidan Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shufang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yayu Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
6
|
Xiang N, Zhang B, Hu J, Li K, Guo X. Modulation of carotenoid biosynthesis in maize (Zea mays L.) seedlings by exogenous abscisic acid and salicylic acid under low temperature. PLANT CELL REPORTS 2023; 43:1. [PMID: 38108914 DOI: 10.1007/s00299-023-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
KEY MESSAGE Abscisic acid could regulate structural genes in the carotenoid biosynthesis pathway and alleviate the decrease of carotenoids in maize seedlings under low-temperature stress. Low temperature often hampers the development of maize seedlings and hinders the accumulation of carotenoids, which are functional against chilling stress for plants and providing health benefits for human. To explore effective approaches in reducing chilling stress and enhancing the potential nutritional values of maize seedlings, exogenous plant hormones abscisic acid (ABA) and salicylic acid (SA) that may affect carotenoid biosynthesis were applied on low-temperature-stressed maize seedlings. Results showed that low temperature significantly reduced the carotenoid levels in maize seedlings, only preserving 62.8% in comparison to the control. The applied ABA probably interacted with the ABA-responsive cis-acting elements (ABREs) in the promoter regions of PSY3, ZDS and CHYB and activated their expressions. Consequently, the total carotenoid concentration was apparently increased to 1121 ± 47 ng·g-1 fresh weight (FW), indicating the stress alleviation by ABA. The application of SA did not yield positive results in alleviating chilling stress in maize seedlings. However, neoxanthin content could be notably boosted to 52.12 ± 0.45 ng·g-1 FW by SA, offering a biofortification strategy for specific nutritional enhancement. Structural gene PSY1 demonstrated positive correlations with β-carotene and zeaxanthin (r = 0.93 and 0.89), while CRTISO was correlated with total carotenoids (r = 0.92), indicating their critical roles in carotenoid accumulation. The present study exhibited the effectiveness of ABA to mitigate chilling stress and improve the potential nutritional values in low-temperature-stressed maize seedlings, thereby promoting the production of plant-based food sources.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Bing Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Khan AR, Azhar W, Fan X, Ulhassan Z, Salam A, Ashraf M, Liu Y, Gan Y. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110047-110068. [PMID: 37807024 DOI: 10.1007/s11356-023-29993-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.
Collapse
Affiliation(s)
- Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 65020, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Feng X, Li S, Meng D, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is a key regulator of root growth and development. PHYSIOLOGIA PLANTARUM 2023; 175:e13977. [PMID: 37616013 DOI: 10.1111/ppl.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.
Collapse
Affiliation(s)
- Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Sun J, Chen J, Si X, Liu W, Yuan M, Guo S, Wang Y. WRKY41/WRKY46-miR396b-5p-TPR module mediates abscisic acid-induced cold tolerance of grafted cucumber seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1012439. [PMID: 36160963 PMCID: PMC9493262 DOI: 10.3389/fpls.2022.1012439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/01/2023]
Abstract
Grafting is one of the key agronomic measures to enhance the tolerance to environmental stresses in horticultural plants, but the specific molecular regulation mechanism in this tolerance largely remains unclear. Here, we found that cucumber grafted onto figleaf gourd rootstock increased cold tolerance through abscisic acid (ABA) activating WRKY41/WRKY46-miR396b-5p-TPR (tetratricopeptide repeat-like superfamily protein) module. Cucumber seedlings grafted onto figleaf gourd increased cold tolerance and induced the expression of miR396b-5p. Furthermore, overexpression of cucumber miR396b-5p in Arabidopsis improved cold tolerance. 5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) and transient transformation experiments demonstrated that TPR was the target gene of miR396b-5p, while TPR overexpression plants were hypersensitive to cold stress. The yeast one-hybrid and dual-luciferase assays showed that both WRKY41 and WRKY46 bound to MIR396b-5p promoter to induce its expression. Furthermore, cold stress enhanced the content of ABA in the roots and leaves of figleaf gourd grafted cucumber seedlings. Exogenous application of ABA induced the expression of WRKY41 and WRKY46, and cold tolerance of grafted cucumber seedlings. However, figleaf gourd rootstock-induced cold tolerance was compromised when plants were pretreated with ABA biosynthesis inhibitor. Thus, ABA mediated figleaf gourd grafting-induced cold tolerance of cucumber seedlings through activating the WRKY41/WRKY46-miR396b-5p-TPR module.
Collapse
|
11
|
Salah R, Zhang RJ, Xia SW, Song SS, Hao Q, Hashem MH, Li HX, Li Y, Li XX, Lai YS. Higher Phytohormone Contents and Weaker Phytohormone Signal Transduction Were Observed in Cold-Tolerant Cucumber. PLANTS (BASEL, SWITZERLAND) 2022; 11:961. [PMID: 35406941 PMCID: PMC9003209 DOI: 10.3390/plants11070961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Cucumbers (Cucumis sativus L.) originated from the South Asian subcontinent, and most of them are fragile to cold stress. In this study, we evaluated the cold tolerance of 115 cucumber accessions and screened out 10 accessions showing high resistance to cold stress. We measured and compared plant hormone contents between cold-tolerant cucumber CT90R and cold-sensitive cucumber CT57S in cold treatment. Most of the detected plant hormones showed significantly higher content in CT90R. To elucidate the role of plant hormones, we compared the leaf- and root-transcriptomes of CT90R with those of CT57S in cold stress treatment. In leaves, there were 1209 differentially expressed genes (DEGs) between CT90R and CT57S, while there were 703 in roots. These DEGs were not evenly distributed across the chromosomes and there were significant enrichments at particular positions, including qLTT6.2, a known QTL controlling cucumber cold tolerance. The GO and KEGG enrichment analysis showed that there was a significant difference in the pathway of plant hormone transductions between CT90R and CT57S in leaves. In short, genes involved in plant hormone transductions showed lower transcription levels in CT90R. In roots, the most significantly different pathway was phenylpropanoid biosynthesis. CT90R seemed to actively accumulate more monolignols by upregulating cinnamyl-alcohol dehydrogenase (CAD) genes. These results above suggest a new perspective on the regulation mechanism of cold tolerance in cucumbers.
Collapse
Affiliation(s)
- Radwa Salah
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
- Faculty of Agriculture, Minya University, Minya 61511, Egypt
| | - Rui-Jin Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Shi-Wei Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Shan-Shan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Mustafa H. Hashem
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
- Central Lab. of Organic Agriculture, Agricultural Research Center, Giza 12619, Egypt
| | - Huan-Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| | - Xi-Xiang Li
- Institution of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Zhongguancun Street 12, Beijing 100081, China;
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (R.S.); (R.-J.Z.); (S.-W.X.); (S.-S.S.); (Q.H.); (M.H.H.); (H.-X.L.); (Y.L.)
| |
Collapse
|
12
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M. Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:843071. [PMID: 35371159 PMCID: PMC8967244 DOI: 10.3389/fpls.2022.843071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maryam A. Alahdal
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biology, Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|