1
|
Feng L, Chen Y, Ma T, Zhou C, Sang S, Li J, Ji S. Integrative physiology and transcriptome sequencing reveal differences between G. hirsutum and G. barbadense in response to salt stress and the identification of key salt tolerance genes. BMC PLANT BIOLOGY 2024; 24:787. [PMID: 39164616 PMCID: PMC11337788 DOI: 10.1186/s12870-024-05515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stresses that threatens crop growth. Cotton has some degree of salt tolerance, known as the "pioneer crop" of saline-alkali land. Cultivation of cotton is of great significance to the utilization of saline-alkali land and the development of cotton industry. Gossypium hirsutum and G. barbadense, as two major cotton species, are widely cultivated worldwide. However, until recently, the regulatory mechanisms and specific differences of their responses to salt stress have rarely been reported. RESULTS In this study, we comprehensively compared the differences in the responses of G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 to salt stress. The results showed that Hai7124 exhibited better growth than did TM-1 under salt stress, with greater PRO content and antioxidant capability, whereas TM-1 only presented greater K+ content. Transcriptome analysis revealed significant molecular differences between the two cotton species in response to salt stress. The key pathways of TM-1 induced by salt are mainly related to growth and development, such as porphyrin metabolism, DNA replication, ribosome and photosynthesis. Conversely, the key pathways of Hai7124, such as plant hormone signal transduction, MAPK signaling pathway-plant, and phenylpropanoid biosynthesis, are mainly related to plant defense. Further comparative analyses of differentially expressed genes (DEGs) revealed that antioxidant metabolism, abscisic acid (ABA) and jasmonic acid (JA) signalling pathways were more strongly activated in Hai7124, whereas TM-1 was more active in K+ transporter-related genes and ethylene (ETH) signalling pathway. These differences underscore the various molecular strategies adopted by the two cotton species to navigate through salt stress, and Hai7124 responded more strongly to salt stress, which explains the potential reasons for the greater salt tolerance of Hai7124. Finally, we identified 217 potential salt tolerance-related genes, 167 of which overlapped with the confidence intervals of significant SNPs identified in previous genome-wide association studies (GWASs), indicating the high reliability of these genes. CONCLUSIONS These findings provide new insights into the differences in the regulatory mechanisms of salt tolerance between G. hirsutum and G. barbadense, and identify key candidate genes for salt tolerance molecular breeding in cotton.
Collapse
Affiliation(s)
- Liuchun Feng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), Nanjing, 210014, China
| | - Tengyun Ma
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | | | - Shifei Sang
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Junhua Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Shengdong Ji
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Dang K, Wang Y, Tian H, Bai J, Cheng X, Guo L, Zhang Q, Geng Y, Shao X. Impact of ZnO NPs on photosynthesis in rice leaves plants grown in saline-sodic soil. Sci Rep 2024; 14:16233. [PMID: 39004658 PMCID: PMC11247083 DOI: 10.1038/s41598-024-66935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Saline-sodic stress restricts the absorption of zinc by rice, consequently impacting the photosynthesis process of rice plants. In this experiment, Landrace 9 was selected as the test material and the potting method was employed to investigate the influence of ZnO nanoparticles (ZnO NPs) on zinc absorption and chlorophyll fluorescence in rice grown in saline-sodic land. The research findings demonstrate that the application of ZnO NPs proves to be more advantageous for the growth of rice in saline-sodic soil. Notably, the application of ZnO NPs significantly decreases the levels of Na+ and MDA in rice leaves in saline-sodic soil, while increasing the levels of K+ and Zn2+. Additionally, ZnO NPs enhances the content of chloroplast pigments, specific energy flux, quantum yield, and the performance of active PSII reaction center (PIABS) in rice leaves under saline-sodic stress. Furthermore, the relative variable fluorescence (WK and VJ) and quantum energy dissipation rate (φDo) of rice are also reduced. Therefore, the addition of ZnO NPs enhances the transfer of electrons and energy within the rice photosystem when subjected to saline-sodic stress. This promotes photosynthesis in rice plants growing in saline-sodic land, increasing their resistance to saline-sodic stress and ultimately facilitating their growth and development.
Collapse
Affiliation(s)
- Kun Dang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Yuxin Wang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Tian
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Jingjing Bai
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Xiyuan Cheng
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Liying Guo
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Qiang Zhang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Coldland Grain Crops, Ministry of Education, Harbin, 150000, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Yanqiu Geng
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China.
| | - Xiwen Shao
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China.
| |
Collapse
|
3
|
Li L, Hu Y, Wang Y, Zhao S, You Y, Liu R, Wang J, Yan M, Zhao F, Huang J, Yu S, Feng Z. Identification of novel candidate loci and genes for seed vigor-related traits in upland cotton ( Gossypium hirsutum L.) via GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1254365. [PMID: 37719213 PMCID: PMC10503134 DOI: 10.3389/fpls.2023.1254365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently, over 80% of China's cotton-planting area is in Xinjiang Province, where a fully mechanized planting model is adopted, accounting for more than 90% of the total fiber production. Therefore, identifying SV-related loci and genes is crucial for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits, including germination potential, germination rate, and germination index, were investigated across three environments in a panel of 355 diverse accessions based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A total of 26 significant SNPs were detected and divided into six quantitative trait locus regions, including 121 predicted candidate genes. By combining gene expression, gene annotation, and haplotype analysis, two novel candidate genes (Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was found to be involved in artificial selection during cotton breeding by population genetic analysis. Thus, understanding the genetic mechanisms underlying seed vigor-related traits in cotton could help increase the efficiency of direct seeding by molecular marker-assisted selection breeding.
Collapse
Affiliation(s)
- Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yu Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yongbo Wang
- Cotton Sciences Research Institute of Hunan, Changde, Hunan, China
| | - Shuqi Zhao
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Yijin You
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Ruijie Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Jiayi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| |
Collapse
|
4
|
Li W, Lin M, Li J, Liu D, Tan W, Yin X, Zhai Y, Zhou Y, Xing W. Genome-wide association study of drought tolerance traits in sugar beet germplasms at the seedling stage. Front Genet 2023; 14:1198600. [PMID: 37547461 PMCID: PMC10401439 DOI: 10.3389/fgene.2023.1198600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Sugar beets are an important crop for global sugar production. Intense drought and the increasing lack of water resources pose a great threat to sugar beet cultivation. It is a priority to investigate favourable germplasms and functional genes to improve the breeding of drought tolerant plants. Methods: Thus, in this study, 328 sugar beet germplasms were used in a genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers and candidate genes associated with drought tolerance. Results: The results showed that under drought stress (9% PEG-6000), there were 11 significantly associated loci on chromosomes 2, 3, 5, 7, and 9 from the 108946 SNPs filtered using a mixed linear model (MLM). Genome-wide association analysis combined with qRT-PCR identified 13 genes that were significantly differentially expressed in drought-tolerant extreme materials. Discussion: These candidate genes mainly exhibited functions such as regulating sugar metabolism, maintaining internal environmental stability and participating in photosystem repair. This study provides valuable information for exploring the molecular mechanisms of drought tolerance and improvement in sugar beet.
Collapse
Affiliation(s)
- Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xilong Yin
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Zhai
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
5
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SMUD, Haidar S, Hassan HM, Khan MKR. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes (Basel) 2023; 14:1103. [PMID: 37239463 PMCID: PMC10218025 DOI: 10.3390/genes14051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.
Collapse
Affiliation(s)
- Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China;
| | - Sana Muhy-Ud-Din Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Gao Q, Wang H, Yin X, Wang F, Hu S, Liu W, Chen L, Dai X, Liang M. Identification of Salt Tolerance Related Candidate Genes in 'Sea Rice 86' at the Seedling and Reproductive Stages Using QTL-Seq and BSA-Seq. Genes (Basel) 2023; 14:458. [PMID: 36833384 PMCID: PMC9956910 DOI: 10.3390/genes14020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Salt stress seriously affects plant growth and development and reduces the yield of rice. Therefore, the development of salt-tolerant high-yielding rice cultivars through quantitative trait locus (QTL) identification and bulked segregant analysis (BSA) is the main focus of molecular breeding projects. In this study, sea rice (SR86) showed greater salt tolerance than conventional rice. Under salt stress, the cell membrane and chlorophyll were more stable and the antioxidant enzyme activity was higher in SR86 than in conventional rice. Thirty extremely salt-tolerant plants and thirty extremely salt-sensitive plants were selected from the F2 progenies of SR86 × Nipponbare (Nip) and SR86 × 9311 crosses during the whole vegetative and reproductive growth period and mixed bulks were generated. Eleven salt tolerance related candidate genes were located using QTL-seq together with BSA. Real time quantitative PCR (RT-qPCR) analysis showed that LOC_Os04g03320.1 and BGIOSGA019540 were expressed at higher levels in the SR86 plants than in Nip and 9311 plants, suggesting that these genes are critical for the salt tolerance of SR86. The QTLs identified using this method could be effectively utilized in future salt tolerance breeding programs, providing important theoretical significance and application value for rice salt tolerance breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Javid S, Bihamta MR, Omidi M, Abbasi AR, Alipour H, Ingvarsson PK. Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:581. [PMID: 36513980 PMCID: PMC9746167 DOI: 10.1186/s12870-022-03936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinity tolerance in wheat is imperative for improving crop genetic capacity in response to the expanding phenomenon of soil salinization. However, little is known about the genetic foundation underlying salinity tolerance at the seedling growth stage of wheat. Herein, a GWAS analysis was carried out by the random-SNP-effect mixed linear model (mrMLM) multi-locus model to uncover candidate genes responsible for salt tolerance at the seedling stage in 298 Iranian bread wheat accessions, including 208 landraces and 90 cultivars. RESULTS A total of 29 functional marker-trait associations (MTAs) were detected under salinity, 100 mM NaCl (sodium chloride). Of these, seven single nucleotide polymorphisms (SNPs) including rs54146, rs257, rs37983, rs18682, rs55629, rs15183, and rs63185 with R2 ≥ 10% were found to be linked with relative water content, root fresh weight, root dry weight, root volume, shoot high, proline, and shoot potassium (K+), respectively. Further, a total of 27 candidate genes were functionally annotated to be involved in response to the saline environment. Most of these genes have key roles in photosynthesis, response to abscisic acid, cell redox homeostasis, sucrose and carbohydrate metabolism, ubiquitination, transmembrane transport, chromatin silencing, and some genes harbored unknown functions that all together may respond to salinity as a complex network. For genomic prediction (GP), the genomic best linear unbiased prediction (GBLUP) model reflected genetic effects better than both bayesian ridge regression (BRR) and ridge regression-best linear unbiased prediction (RRBLUP), suggesting GBLUP as a favorable tool for wheat genomic selection. CONCLUSION The SNPs and candidate genes identified in the current work can be used potentially for developing salt-tolerant varieties at the seedling growth stage by marker-assisted selection.
Collapse
Affiliation(s)
- Saeideh Javid
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | | | - Mansour Omidi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Ali Reza Abbasi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Flores-León A, Peréz Moro C, Martí R, Beltran J, Roselló S, Cebolla-Cornejo J, Picó B. Spanish Melon Landraces: Revealing Useful Diversity by Genomic, Morphological, and Metabolomic Analysis. Int J Mol Sci 2022; 23:7162. [PMID: 35806170 PMCID: PMC9266967 DOI: 10.3390/ijms23137162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spain is a secondary centre of the diversification of the melon (Cucumis melo L.), with high diversity represented in highly appreciated landraces belonging to the Flexuosus and Ibericus groups. A collection of 47 accessions of Flexuosus, Chate, Piel de Sapo, Tendral, Amarillo, Blanco, and Rochet was analysed using a genotyping-by-sequencing (GBS) approach. A total of 66,971 quality SNPs were identified. Genetic analysis differentiated Ibericus accessions and exotic materials (Ameri, Momordica, Kachri, and Agrestis), while Flexuous accessions shared ancestry between them. Within the Ibericus group, no clear genomic distinction could be identified for the different landraces evaluated, with accessions of different landraces showing high genetic similarity. The morphological characterization confirmed that the external colour and fruit shape had been used as recognition patterns for Spanish melon landraces, but variability within a landrace exists. Differences were found in the sugars and acid and volatile profiles of the materials. Flexuosus and Chate melons at the immature commercial stage accumulated malic acid and low levels of hexoses, while Ibericus melons accumulated high contents of sucrose and citric acid. Specific trends could be identified in the Ibericus landraces. Tendral accumulated low levels of sugars and citric acid and high of malic acid, maintaining higher firmness, Rochet reached higher levels of sugars, and Amarillo tended to lower malic acid contents. Interestingly, high variability was found within landraces for the acidic profile, offering possibilities to alter taste tinges. The main volatile organic compounds (VOCs) in Flexuosus and Chate were aldehydes and alcohols, with clear differences between both groups. In the Ibericus landraces, general trends for VOC accumulation could be identified, but, again, a high level of variation exists. This situation highlights the necessity to develop depuration programs to promote on-farm in situ conservation and, at the same time, offers opportunities to establish new breeding program targets and to take advantage of these sources of variation.
Collapse
Affiliation(s)
- Alejandro Flores-León
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| | - Clara Peréz Moro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| | - Raul Martí
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain;
| | - Joaquin Beltran
- Instituto Universitario de Plaguicidas y Aguas (IUPA), Campus de Riu Sec, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain;
| | - Salvador Roselló
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain;
| | - Jaime Cebolla-Cornejo
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain;
| | - Belen Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| |
Collapse
|