1
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Shmakova NY, Titov AF. Response of Native and Non-Native Subarctic Plant Species to Continuous Illumination by Natural and Artificial Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:2742. [PMID: 39409612 PMCID: PMC11479083 DOI: 10.3390/plants13192742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
This study addressed the following questions: How does continuous lighting (CL) impact plant physiology, and photosynthetic and stress responses? Does the impact of CL depend on the source of the light and other environmental factors (natural vs. artificial)? Do responses to CL differ for native and non-native plant species in the subarctic region and, if differences exist, what physiological reasons might they be associated with them? Experiments were conducted with three plants native to the subarctic region (Geranium sylvaticum L., Geum rivale L., Potentilla erecta (L.) Raeusch.) and three non-native plant species (Geranium himalayense Klotzsch, Geum coccineum Sibth. and Sm., Potentilla atrosanguinea Loddiges ex D. Don) introduced in the Polar-Alpine Botanic Garden (KPABG, 67°38' N). The experimental groups included three species pairs exposed to (1) a natural 16 h photoperiod, (2) natural CL, (3) an artificial 16 h photoperiod and (4) artificial CL. In the natural environment, measurements of physiological and biochemical parameters were carried out at the peak of the polar day (at the end of June), when the plants were illuminated continuously, and in the second week of August, when the day length was about 16 h. Th experiments with artificial lighting were conducted in climate chambers where plants were exposed to 16 h or 24 h photoperiods for two weeks. Other parameters (light intensity, spectrum composition, temperature and air humidity) were held constant. The obtained results have shown that plants lack specific mechanisms of tolerance to CL. The protective responses are non-specific and induced by developing photo-oxidative stress. In climate chambers, under constant environmental conditions artificial CL causes leaf injuries due to oxidative stress, the main cause of which is circadian asynchrony. In nature, plants are not photodamaged during the polar day, as endogenous rhythms are maintained due to daily fluctuations of several environmental factors (light intensity, spectral distribution, temperature and air humidity). The obtained data show that among possible non-specific protective mechanisms, plants use flavonoids to neutralize the excess ROS generated under CL. In local subarctic plants, their photoprotective role is significantly higher than in non-native introduced plant species.
Collapse
Affiliation(s)
- Tatjana G. Shibaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Elena G. Sherudilo
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Alexandra A. Rubaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Natalya Yu. Shmakova
- Polar-Alpine Botanical Garden, Kola Scientific Center, Russian Academy of Sciences, Kirovsk 184256, Russia;
| | - Alexander F. Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| |
Collapse
|
2
|
Dogan M, Ugur K. Enhancing the phytoremediation efficiency of Bacopa monnieri (L.) Wettst. using LED lights: a sustainable approach for heavy metal pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53270-53290. [PMID: 39183254 DOI: 10.1007/s11356-024-34748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impacts of LEDs on the phytoremediation of arsenic (As) and mercury (Hg) by Bacopa monnieri (L.) Wettst. were investigated, along with the examination of the biochemical characteristics of plants exposed to metal-induced toxicity. In vitro multiple and rapid plant propagations were successfully achieved by adding 1.0 mg/L 6-Benzyl amino purine (BAP) to the Murashige and Skoog (MS) basal salt and vitamin culture medium. For plant-based remediation experiments, different concentrations of As (0-1.0 mg/L) and Hg (0-0.2 mg/L) were added to the water environment, and trials were conducted for four different application periods (1-21 days). White, red, and blue LEDs, as well as white fluorescent light, were preferred as the light environment. The results revealed that LED lights were more effective for heavy metal accumulation, with red LED light significantly enhancing the plant's phytoremediation capacity compared to other LED applications. Moreover, when examining biochemical stress parameters such as levels of photosynthetic pigments, protein concentrations, and lipid peroxidation, plants under red LED light showed better results. Generally, the lowest results were obtained under white fluorescent light. These findings contribute to phytoremediation studies by highlighting the integration of LED lights, thereby enabling the development of a more effective, cost-efficient, and environmentally sustainable remediation system compared to other treatment methods.
Collapse
Affiliation(s)
- Muhammet Dogan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| | - Kubra Ugur
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, Yunus Emre Campus, 70200, Karaman, Turkey
| |
Collapse
|
3
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Variations in photoperiods and their impact on yield, photosynthesis and secondary metabolite production in basil microgreens. BMC PLANT BIOLOGY 2024; 24:712. [PMID: 39060976 PMCID: PMC11282849 DOI: 10.1186/s12870-024-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 μmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Shibaeva TG, Sherudilo EG, Ikkonen E, Rubaeva AA, Levkin IA, Titov AF. Effects of Extended Light/Dark Cycles on Solanaceae Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:244. [PMID: 38256794 PMCID: PMC10821415 DOI: 10.3390/plants13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
The absence of an externally-imposed 24 h light/dark cycle in closed plant production systems allows setting the light environmental parameters in unconventional ways. Innovative lighting modes for energy-saving, high-quality, and yield production are widely discussed. This study aimed to evaluate the effects of the light/dark cycles of 16/8 h (control) and 24/12 h, 48/24 h, 96/48 h, 120/60 h (unconventional cycles) based on the same total light amount, and continuous lighting (360/0 h) on plant performance of some Solanaceae species. Responses of eggplant (Solanum melongena L.), sweet pepper (Capsicum annuum L.), tobacco (Nicotiana tabacum L.), and tomato (Solanum lycopersicum L.) plants to extended light/dark cycles and continuous lighting were studied under controlled climate conditions. Plants with two true leaves were exposed to different light/dark cycles for 15 days. Light intensity was 250 µmol m-2 s-1 PPFD, provided by light-emitting diodes (LEDs). After the experiment, tomato, sweet pepper, and eggplant transplants were planted in a greenhouse and grown under identical conditions of natural photoperiod for the estimation of the after-effect of light treatments on fruit yield. Extended light/dark cycles of 24/12 h, 48/24 h, 96/48 h, 120/60 h, and 360/0 h affected growth, development, photosynthetic pigment content, anthocyanin and flavonoid content, and redox state of plants. Effects varied with plant species and length of light/dark cycles. In some cases, measured parameters improved with increasing light/dark periods despite the same total sum of illumination received by plants. Treatments of tomato and pepper transplants with 48/24 h, 96/48 h, and 120/60 h resulted in higher fruit yield compared to conventional 16/8 h photoperiod. The conclusion was made that extended light/dark cycles can result in increased light use efficiency compared to conventional photoperiod and, therefore, reduced product cost, but for practical application, the effects need to be further explored for individual plant species or even cultivars.
Collapse
Affiliation(s)
- Tatjana G. Shibaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Elena G. Sherudilo
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Elena Ikkonen
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Alexandra A. Rubaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Ilya A. Levkin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
- Institute of Biology, Ecology and Agricultural Technologies, Petrozavodsk State University, Petrozavodsk 185910, Russia
| | - Alexander F. Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| |
Collapse
|
5
|
Parkes MG, Azevedo DL, Cavallo AC, Domingos T, Teixeira RFM. Life cycle assessment of microgreen production: effects of indoor vertical farm management on yield and environmental performance. Sci Rep 2023; 13:11324. [PMID: 37443192 PMCID: PMC10345114 DOI: 10.1038/s41598-023-38325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The global production of plant-based foods is a significant contributor to greenhouse gas emissions. Indoor vertical farms (IVFs) have emerged as a promising approach to urban agriculture. However, their environmental performance is not well understood, particularly in relation to operational choices where global warming potentials (GWP) can vary between 0.01-54 kg CO2e/kg-1 of leafy greens produced. We conducted a life cycle assessment (LCA) of a building-integrated IVF for microgreen production to analyse a range of operational conditions for cultivation: air temperature, CO2 concentration, and photoperiod. We analyzed a dynamic LCA inventory that combined a process-based plant growth model and a mass balance model for air and heat exchange between the chamber and the outside. Results showed that the GWP of IVFs can vary greatly depending on the operation conditions set, ranging from 3.3 to 63.3 kg CO2e/kg-1. The optimal conditions for minimizing GWP were identified as 20 ℃, maximum CO2 concentration in the chamber, and maximum photoperiod, which led to a minimum GWP of 3.3 kg CO2e/kg-1 and maximum production of 290.5 kg fresh weight week-1. Intensification of production thus led to lower impacts because the marginal increase in yield due to increased resource use was larger than the marginal increase in impact. Therefore, adjusting growing conditions is essential for the sustainability of urban food production.
Collapse
Affiliation(s)
- Michael G Parkes
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal.
- Canguru Foods, Lda, Social Enterprise, Rua José Dias Simão S/N, TAGUSVALLEY - Parque de Ciência e Tecnologia, 2200-062, Abrantes, Portugal.
| | - Duarte Leal Azevedo
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| | - Ana Celeste Cavallo
- CIRSA - Centro Interdipartimentale Di Ricerca Per Le Scienze Ambientali, Alma Mater Studiorum - University of Bologna, Via Dell'Agricoltura 5, 48123, Ravenna, Italy
| | - Tiago Domingos
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| | - Ricardo F M Teixeira
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
6
|
Lanoue J, St. Louis S, Little C, Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. FRONTIERS IN PLANT SCIENCE 2022; 13:983222. [PMID: 36247650 PMCID: PMC9564221 DOI: 10.3389/fpls.2022.983222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microgreens represent a fast growing segment of the edible greens industry. They are prized for their colour, texture, and flavour. Compared to their mature counterparts, microgreens have much higher antioxidant and nutrient content categorizing them as a functional food. However, current production practices in plant factories with artificial light are energy intensive. Specifically, the lack of sunlight within the indoor structure means all of the light must be provided via energy consuming light fixtures, which is energy intensive and costly. Plant growth is usually increased with the total amount of light provided to the plants - daily light integral (DLI). Long photoperiods of low intensity lighting (greater than 18h) providing the desired/target DLI can reduce the capital costs for light fixtures and electricity costs. This is achieved by moving the electricity use from peak daytime hours (high price) to off-peak hours (low price) during the night in regions with time-based pricing scheme and lowering the electricity use for air conditioning, if plant growth is not compromised. However, lighting with photoperiods longer than tolerance thresholds (species/cultivar specific) usually leads to plant stress/damage. Therefore, we investigated the effects of continuous 24h white light (CL) at two DLIs (~14 and 21 mol m-2 d-1) on plant growth, yield, and antioxidant content on 4 types of microgreens - amaranth, collard greens, green basil, and purple basil to see if it compromises microgreen production. It was found that amaranth and green basil had larger fresh biomass when grown under CL compared to 16h when the DLIs were the same. In addition, purple basil had higher biomass at higher DLI, but was unaffected by photoperiods. Plants grown under the CL treatments had higher energy-use-efficiencies for lighting (10-42%) than plants grown under the 16h photoperiods at the same DLI. Notably, the electricity cost per unit of fresh biomass ($ g-1) was reduced (8-38%) in all microgreens studied when plants were grown under CL lighting at the same DLIs. Amaranth and collard greens also had higher antioxidant content. Taken together, growing microgreens under CL can reduce electricity costs and increase yield while maintaining or improving nutritional content.
Collapse
Affiliation(s)
| | | | | | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
7
|
Ebert AW. Sprouts and Microgreens-Novel Food Sources for Healthy Diets. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040571. [PMID: 35214902 PMCID: PMC8877763 DOI: 10.3390/plants11040571] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops' wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers.
Collapse
Affiliation(s)
- Andreas W Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
8
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Titov AF. Effect of end-of production continuous lighting on yield and nutritional value of Brassicaceae microgreens. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224802005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of continuous lighting applied in the end-of-production period on growth and nutritional quality of radish (Raphanus sativus var. radicula), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica) and arugula (Eruca sativa) was investigated in growth chambers under LED lighting. Microgreens were grown under 16 h photoperiod and 3 days before harvest half of plants were placed under continuous lighting conditions. Pre-harvest continuous lighting treatment increased yield, robustness index, and shorten time to harvest in radish, broccoli, mizuna and arugula microgreens. The end-of-production treatment has also led to higher content of compounds with antioxidative properties (flavonoids, proline) and increased the activity of antioxidant enzymes (CAT, APX, GPX) by inducing mild photooxidative stress. Increased antioxidative status added nutritional value to microgreens that can be used as functional foods providing health benefits. Pre-harvest treatment by continuous lighting is suggested as the practice than can allow producers to increase yield, aesthetic appeal, nutritional quality, and market value of Brassicacea microgreens.
Collapse
|