1
|
Xu H, Wu M, Wei W, Ren W, Zheng Z. Chrysanthemum morifolium Ramat. as a traditional tea material: Unraveling the influence of kill-green process on drying characteristics, phytochemical compounds, and volatile profile. Food Res Int 2025; 200:115478. [PMID: 39779126 DOI: 10.1016/j.foodres.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums. Results showed that the kill-green process increased the freedom degree of immobile water, reduced the relative content of free water, and induced microstructure alterations, thus enhancing the water diffusion and shortening the subsequent drying time by up to 46.15 %. Compared to SK, HHAIK more rapidly inactivated PPO and POD, causing an improved color profile of dried samples. Dried samples treated with HHAIK for 60 s exhibited higher retention of 9 individual phenolics, total sugar, amino acids, and volatile compounds, thus resulting in higher sensorial acceptance than those treated with SK for 60 s. This study offers theoretical insights and technical support for the future development of high-quality chrysanthemum products.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhian Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
Hu A, Liu Y, Wu S. A review on polysaccharide-based jelly: Gell food. Food Chem X 2024; 23:101562. [PMID: 38984292 PMCID: PMC11231651 DOI: 10.1016/j.fochx.2024.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
The prevalence of gel foods in the food industry has grown significantly due to their high water content, low calorie content, and ability to enhance satiety. This review focuses on jelly powder, the earliest form of gel food in the current food industry. Jelly is the earliest form of the gel-food, dating back to the Northern Song dynasty in China, and it relies on gelatinizing and aging of starch to form a gel. With the development of technology, jelly gradually evolved to rely on gel form of food additives. Jelly is divided into starch jelly and non-starch jelly according to their different gel formation. The development status of the two kinds of jelly is also summarized. Additionally, the current research status of these materials is summarized to broaden the understanding of gel food and offer valuable insights for future research in this field.
Collapse
Affiliation(s)
- Aoxue Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Yu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| |
Collapse
|
3
|
Almaghlouth BJ, Alqahtani NK, Alnabbat KI, Mohamed HA, Alnemr TM, Habib HM. Valorization of Second-Grade Date Fruit Byproducts and Nonstandard Sweet Potato Tubers to Produce Novel Biofortified Functional Jam. Foods 2023; 12:1906. [PMID: 37174443 PMCID: PMC10178723 DOI: 10.3390/foods12091906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Byproducts of second-grade dates and sweet potato tubers of noncommercial standard are produced along with the main product and are just as important as the main product but cannot be sold in the open market, as they may not be considered acceptable by consumers. Such byproducts can be valorized through the manufacture of a wide range of functional food products with high market appeal, such as jams. The research approach of this study included measuring antioxidant activity, total flavonoids, polyphenols, physicochemical and color indices, pH, and total sugar, as well as conducting a sensory evaluation, of mixed jams composed of different ratios of date jam (DFJ) to sweet potato jam (SPJ), namely, DP1 (80:20), DP2 (70:30), DP3 (60:40), and DP4 (50:50). To date, no other studies have considered producing mixed jam from dates and sweet potato byproducts. The sensory evaluation results indicated that jam DP4 (consisting of 50% date and 50% sweet potato) had the maximum overall acceptability. This investigation reveals the potential of using mixed byproducts in jams as natural functional ingredients, suggesting the economic value of valorization byproducts as low-cost ingredients to expand the properties, nutritional value, antioxidant content, and overall acceptability of jams. The discovered optimal mixed fruit jam has significant potential for further development as a commercial product.
Collapse
Affiliation(s)
- Bayan J. Almaghlouth
- Department of Food and Nutrition Sciences, College of Agricultural and food Sciences, King Faisal University, Al Hufuf 31982, Saudi Arabia; (B.J.A.); (N.K.A.); (T.M.A.)
| | - Nashi K. Alqahtani
- Department of Food and Nutrition Sciences, College of Agricultural and food Sciences, King Faisal University, Al Hufuf 31982, Saudi Arabia; (B.J.A.); (N.K.A.); (T.M.A.)
- Date Palm Research Center of Excellence, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Khadijah I. Alnabbat
- Department of Food and Nutrition Sciences, College of Agricultural and food Sciences, King Faisal University, Al Hufuf 31982, Saudi Arabia; (B.J.A.); (N.K.A.); (T.M.A.)
| | - Hisham A. Mohamed
- Date Palm Research Center of Excellence, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Tareq M. Alnemr
- Department of Food and Nutrition Sciences, College of Agricultural and food Sciences, King Faisal University, Al Hufuf 31982, Saudi Arabia; (B.J.A.); (N.K.A.); (T.M.A.)
| | - Hosam M. Habib
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt
| |
Collapse
|
4
|
Kohli D, Champawat PS, Mudgal VD. Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2239-2250. [PMID: 36433663 DOI: 10.1002/jsfa.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Asparagus (Asparagus racemosus L.) is one of the most significant traditional medicinal plants, containing phytochemicals that are non-nutritive but beneficial to health. It contains bioactive metabolites such as fructo-oligosaccharides, polysaccharides, asparosides, shatavarins, sapogenins, racemosols, isoflavones, glycosides, mucilage, and fatty acids, while saponin is one of the main active constituents of asparagus roots. Asparagus helps in fertility promotion, stress management, and hormone modulation. It also treats stomach ulcers, kidney disorders, and Alzheimer's disease. Substitution of asparagus powder or extract for value addition of food products (such as beverages, bakery, and milk) enhances the nutritional and functional properties. Currently, the plant is considered endangered in its natural habitat because of its destructive harvesting, habitat destruction, and deforestation. As it is a highly perishable commodity, it needs proper handling, preservation, and storage. This review will outline the medicinal properties, uses, value addition, and preservation techniques of asparagus roots. The study found that, till now, the only preservation techniques used to increase the shelf life of asparagus roots are drying and irradiation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Deepika Kohli
- Department of Processing and Food Engineering, CTAE, MPUAT, Udaipur, Rajasthan, India
| | - Padam Singh Champawat
- Department of Processing and Food Engineering, CTAE, MPUAT, Udaipur, Rajasthan, India
| | | |
Collapse
|
5
|
Tong SC, Siow LF, Tang TK, Lee YY. Plant-based milk: unravel the changes of the antioxidant index during processing and storage - a review. Crit Rev Food Sci Nutr 2022; 64:4603-4621. [PMID: 36377721 DOI: 10.1080/10408398.2022.2143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
Collapse
Affiliation(s)
- S C Tong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - L F Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - T K Tang
- School of Food Studies and Gastronomy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Y Y Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
6
|
Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes (Basel) 2022. [DOI: 10.3390/pr10102031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Assays of total antioxidant capacity (TAC) are popular in the analysis of food products. This review presents the most popular assays of TAC and their limitations, databases of TAC of food products, their application in clinical studies, and the effect of processing on the TAC of food. The importance of sample preparation for TAC assays and striking effects of digestion in the gastrointestinal tract on the TAC of food are discussed. Critical opinions on the validity of food TAC assays are considered. It is concluded that TAC methods can be useful as screening assays for food quality control and as low-cost, high-throughput tools used to discover potential antioxidant sources and follow changes in the content of antioxidants during food processing. However, effects revealed by TAC assays should be followed and explained using more specific methods.
Collapse
|