1
|
Ma WB, Ou Y, Dayananda B, Ji HJ, Yu T. The complete chloroplast genome of Rhododendronambiguum and comparative genomics of related species. COMPARATIVE CYTOGENETICS 2024; 18:143-159. [PMID: 39170949 PMCID: PMC11336383 DOI: 10.3897/compcytogen.18.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024]
Abstract
Rhododendron Linnaeus, 1753, the largest genus of woody plants in the Northern Hemisphere, includes some of the most significant species in horticulture. Rhododendronambiguum Hemsl, 1911, a member of subsection Triflora Sleumer 1947, exemplifies typical alpine Rhododendron species. The analysis of the complete chloroplast genome of R.ambiguum offers new insights into the evolution of Rhododendron species and enhances the resolution of phylogenetic relationships. This genome is composed of 207,478 base pairs, including a pair of inverted repeats (IRs) of 47,249 bp each, separated by a large single-copy (LSC) region of 110,367 bp and a small single-copy (SSC) region of 2,613 bp. It contains 110 genes: 77 protein-coding genes, 29 tRNAs, four unique rRNAs (4.5S, 5S, 16S, and 23S), with 16 genes duplicated in the IRs. Comparative analyses reveal substantial diversity in the Rhododendron chloroplast genome structures, identifying a fourth variant pattern. Specifically, four highly divergent regions (trnI-rpoB, ndhE-psaC, rpl32-ndhF, rrn16S-trnI) were noted in the intergenic spacers. Additionally, 76 simple sequence repeats were identified. Positive selection signals were detected in four genes (cemA, rps4, rpl16, and rpl14), evidenced by high Ka/Ks ratios. Phylogenetic reconstruction based on two datasets (shared protein-coding genes and complete chloroplast genomes) suggests that R.ambiguum is closely related to R.concinnum Hemsley, 1889. However, the phylogenetic positions of subsection Triflora Pojarkova, 1952 species remain unresolved, indicating that the use of complete chloroplast genomes for phylogenetic research in Rhododendron requires careful consideration. Overall, our findings provide valuable genetic information that will enhance understanding of the evolution, molecular biology, and genetic improvement of Rhododendron spieces.
Collapse
Affiliation(s)
- Wen Bao Ma
- Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan, Academy of Forestry, Chengdu 610081, ChinaAcademy of ForestryChengduChina
| | - Yafei Ou
- Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan, Academy of Forestry, Chengdu 610081, ChinaAcademy of ForestryChengduChina
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, AustraliaThe University of QueenslandBrisbaneAustralia
| | - Hui Juan Ji
- Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan, Academy of Forestry, Chengdu 610081, ChinaAcademy of ForestryChengduChina
| | - Tao Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, ChinaGuiyang UniversityGuiyangChina
| |
Collapse
|
2
|
Kurt S, Kaymaz Y, Ateş D, Tanyolaç MB. Complete chloroplast genome of Lens lamottei reveals intraspecies variation among with Lens culinaris. Sci Rep 2023; 13:14959. [PMID: 37696838 PMCID: PMC10495401 DOI: 10.1038/s41598-023-41287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes.
Collapse
Affiliation(s)
- Selda Kurt
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Yasin Kaymaz
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Duygu Ateş
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | | |
Collapse
|
3
|
Wang ZK, Liu Y, Zheng HY, Tang MQ, Xie SQ. Comparative Analysis of Codon Usage Patterns in Nuclear and Chloroplast Genome of Dalbergia (Fabaceae). Genes (Basel) 2023; 14:genes14051110. [PMID: 37239470 DOI: 10.3390/genes14051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Dalbergia plants are widely distributed across more than 130 tropical and subtropical countries and have significant economic and medicinal value. Codon usage bias (CUB) is a critical feature for studying gene function and evolution, which can provide a better understanding of biological gene regulation. In this study, we comprehensively analyzed the CUB patterns of the nuclear genome, chloroplast genome, and gene expression, as well as systematic evolution of Dalbergia species. Our results showed that the synonymous and optimal codons in the coding regions of both nuclear and chloroplast genome of Dalbergia preferred ending with A/U at the third codon base. Natural selection was the primary factor affecting the CUB features. Furthermore, in highly expressed genes of Dalbergia odorifera, we found that genes with stronger CUB exhibited higher expression levels, and these highly expressed genes tended to favor the use of G/C-ending codons. In addition, the branching patterns of the protein-coding sequences and the chloroplast genome sequences were very similar in the systematic tree, and different with the cluster from the CUB of the chloroplast genome. This study highlights the CUB patterns and features of Dalbergia species in different genomes, explores the correlation between CUB preferences and gene expression, and further investigates the systematic evolution of Dalbergia, providing new insights into codon biology and the evolution of Dalbergia plants.
Collapse
Affiliation(s)
- Zu-Kai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Hao-Yue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Min-Qiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Shang-Qian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Senapati A, Chetri BK, Mitra S, Shelke RG, Rangan L. Decoding the complete chloroplast genome of Cissus quadrangularis: insights into molecular structure, comparative genome analysis and mining of mutational hotspot regions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:709-724. [PMID: 37363414 PMCID: PMC10284753 DOI: 10.1007/s12298-023-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Cissus quadrangularis L., a member of the Vitaceae family, is an important medicinal plant with widespread application in Indian traditional medicines. C. quadrangularis L. whole chloroplast genome of 160,404 bp was assembled using a genome skimming approach from the whole genome library. The assembled chloroplast genome contained a large single-copy region (88,987 bp), a small single-copy region (18,621 bp), and pairs of inverted repeat regions (26,398 bp). It also comprised 133 genes, including 37 tRNAs, eight rRNAs, and 88 protein-coding genes. Aside from that, we annotated three genes atpH, petB, and psbL, as well as one duplicated copy of the ycf1 gene in C. quadrangularis L. that had previously been missing from the annotation of compared Cissus chloroplast genomes. Five divergent hotspot regions such as petA_psbJ (0.1237), rps16_trnQ-UUG (0.0913), psbC_trnS-UGA (0.0847), rps15_ycf1 (0.0788), and rps2_rpoC2 (0.0788) were identified in the investigation that could aid in future species discrimination. Surprisingly, we found the overlapping genes ycf1 and ndhF on the IRb/SSC junction, rarely seen in angiosperms. The results of the phylogenetic study showed that the genomes of the Cissus species under study formed a single distinct clade. The detailed annotations given in this study could be useful in the future for genome annotations of Cissus species. The current findings of the study have the potential to serve as a useful resource for future research in the field of population genetics and the evolutionary relationships in the Cissus genus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01312-w.
Collapse
Affiliation(s)
- Alok Senapati
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bimal K. Chetri
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Sudip Mitra
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Rahul G. Shelke
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Latha Rangan
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
5
|
Wong KH, Siu TY, Tsang SSK, Kong BLH, Wu HY, But GWC, Hui JHL, Shaw PC, Lau DTW. The Complete Chloroplast Genomes of Nine Smilacaceae Species from Hong Kong: Inferring Infra- and Inter-Familial Phylogeny. Int J Mol Sci 2023; 24:ijms24087460. [PMID: 37108622 PMCID: PMC10138973 DOI: 10.3390/ijms24087460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Smilacaceae is a cosmopolitan family consisting of 200-370 described species. The family includes two widely accepted genera, namely Smilax and Heterosmilax. Among them, the taxonomical status of Heterosmilax has been continuously challenged. Seven Smilax and two Heterosmilax species can be found in Hong Kong, with most of them having medicinal importance. This study aims to revisit the infra-familial and inter-familial relationships of the Smilacaceae using complete chloroplast genomes. The chloroplast genomes of the nine Smilacaceae species from Hong Kong were assembled and annotated, which had sizes of 157,885 bp to 159,007 bp; each of them was identically annotated for 132 genes, including 86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes. The generic status of Heterosmilax was not supported because it was nested within the Smilax clade in the phylogenetic trees, echoing previous molecular and morphological studies. We suggest delimitating the genus Heterosmilax as a section under the genus Smilax. The results of phylogenomic analysis support the monophyly of Smilacaceae and the exclusion of Ripogonum from the family. This study contributes to the systematics and taxonomy of monocotyledons, authentication of medicinal Smilacaceae, and conservation of plant diversity.
Collapse
Affiliation(s)
- Kwan-Ho Wong
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Research Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Stacey Shun-Kei Tsang
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Simon F.S. Li Marine Science Laboratory and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (The Chinese University of Hong Kong) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David Tai-Wai Lau
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
6
|
Comparison of DNA extraction methods on CITES-listed timber species and application in species authentication of commercial products using DNA barcoding. Sci Rep 2023; 13:151. [PMID: 36599919 DOI: 10.1038/s41598-022-27195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Quality and quantity of DNA extracted from wood is important for molecular identification of wood species, which can serve for conservation of wood species and law enforcement to combat illegal wood trading. Rosewood (Dalbergia and Pterocarpus) and agarwood (Aquilaria) are the most commonly found hardwood in timber seizure incidents. To monitor international trade of timber and commercial wood products and to protect these endangered wood species from further population decline, in this study, we have compared three extraction protocols for DNA extraction from 12 samples of rosewood and agarwood timber logs, and later applied the best DNA extraction protocol on 10 commercial wood products claimed to be rosewood and agarwood. We also demonstrated the applicability of DNA mini-barcoding with multi-loci combination with reference library for identifying the species of timber and commercial wood products. We found that a silica column-based method with guanidine thiocyanate-containing binding buffer served the best in DNA extraction from different parts of wood in all three genera with good quality and quantity. Single barcode region ITS2 or multi-loci combinations including ITS2 barcode region generally provide better discriminatory power for species identification for both rosewood and agarwood. All 10 products were identified to species-level using multi-loci combination. In terms of accuracy in labelling, 80% of them were labelled correctly. Our work has shown the feasibility of extracting good quality of DNA from authentic wood samples and processed wood products and identifying them to species level based on DNA barcoding technology.
Collapse
|
7
|
Comprehensive Comparative Analysis and Development of Molecular Markers for Dianthus Species Based on Complete Chloroplast Genome Sequences. Int J Mol Sci 2022; 23:ijms232012567. [PMID: 36293423 PMCID: PMC9604191 DOI: 10.3390/ijms232012567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars (‘HY’ and ‘WC’). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 ‘87M’ (the hybrid offspring F1 from D. chinensis and ‘HY’). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.
Collapse
|