1
|
Chandrakasan G, García-Trejo JF, Feregrino-Pérez AA, Aguirre-Becerra H, García ER, Nieto-Ramírez MI. Preliminary Screening on Antibacterial Crude Secondary Metabolites Extracted from Bacterial Symbionts and Identification of Functional Bioactive Compounds by FTIR, HPLC and Gas Chromatography-Mass Spectrometry. Molecules 2024; 29:2914. [PMID: 38930979 PMCID: PMC11206551 DOI: 10.3390/molecules29122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.
Collapse
Affiliation(s)
- Gobinath Chandrakasan
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | - Juan Fernando García-Trejo
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | | | | | | | | |
Collapse
|
2
|
Elkhawas Y, Gad HA, AbdelRazek MMM, Mandour AA, Bishr MM, Al Musayeib NM, Ashour ML, Khalil N. LC-ESI-MS/MS-Based Comparative Metabolomic Study, Antioxidant and Antidiabetic Activities of Three Lobelia Species: Molecular Modeling and ADMET Study. ACS OMEGA 2024; 9:20477-20487. [PMID: 38737064 PMCID: PMC11079896 DOI: 10.1021/acsomega.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
The hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 μg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.
Collapse
Affiliation(s)
- Yasmin
A. Elkhawas
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Haidy A. Gad
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Mohamed M. M. AbdelRazek
- Department
of Pharmacognosy, Faculty of Pharmacy, Badr
University in Cairo (BUC), Cairo 11829, Egypt
| | - Asmaa A. Mandour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Mokhtar M. Bishr
- Plant
General Manager and Technical Director, Mepaco Co., Enshas AR Raml, Bilbeis, Sharkeiya 11361, Egypt
| | - Nawal M. Al Musayeib
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed L. Ashour
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Noha Khalil
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
3
|
Ashmawy NS, Gad HA, El-Nashar HAS. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023; 28:7861. [PMID: 38067590 PMCID: PMC10708113 DOI: 10.3390/molecules28237861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Syzygium cumini L. is an evergreen tree belonging to family Myrtaceae, employed for different traditional uses like diabetes, inflammation, and fever. The current study aimed to compare the chemical compositions of the essential oils (EOs) isolated from different organs of Syzygium cumini (leaves (Scl), fruits (Scf), seeds (Scs), and bark (Scb)) using a GC/MS analysis. Also, a chemometric analysis was applied to explore the main similarities and differences among different organs using a Principal Component Analysis (PCA) and a hierarchal cluster analysis (HCA). Furthermore, in vitro antiaging activities were investigated via anti-collagenase, anti-elastase, and anti-hyaluronidase assays. The GC-MS analysis revealed 82 compounds representing 92.13%, 99.42%, 100%, and 92.97% in Scl, Scf, Scs, and Scb, respectively. The predominant components were α-pinene, β-pinene, (E)-β-caryophyllene, α-caryophyllene, caryophyllene oxide, and α-humulene epoxide II with variable percentages. All EOs were positioned on positive PC1, except for Scs, which was positioned on the negative side in a separate quadrant. The HCA dendrogram displayed the closeness of Scl and Scb, which was not clearly recognized in the PCA score plot. Moreover, the Scs oils were totally discriminated from other parts. The Scl and Scs oils showed superior anti-collagenase, anti-elastase, and anti-hyaluronidase activities. Thus, S. cumini oils should be considered for cosmetic preparations to retard skin aging manifestations.
Collapse
Affiliation(s)
- Naglaa S. Ashmawy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
4
|
GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules 2023; 28:molecules28052193. [PMID: 36903440 PMCID: PMC10004251 DOI: 10.3390/molecules28052193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The genus Moricandia (Brassicaceae) comprises about eight species that were used in traditional medicine. Moricandia sinaica is used to alleviate certain disorders such as syphilis and exhibits analgesic, anti-inflammatory, antipyretic, antioxidant, and antigenotoxic properties. Throughout this study, we aimed to figure out the chemical composition of lipophilic extract and essential oil obtained from M. sinaica aerial parts using GC/MS analysis, as well as their cytotoxic and antioxidant activities correlated with the major detected compounds' molecular docking. The results revealed that both the lipophilic extract and the oil were found to be rich in aliphatic hydrocarbons, accounting for 72.00% and 79.85%, respectively. Furthermore, the lipophilic extract's major constituents are octacosanol, γ-sitosterol, α-amyrin, β-amyrin acetate, and α-tocopherol. Contrarily, monoterpenes and sesquiterpenes accounted for the majority of the essential oil. The essential oil and the lipophilic extract of M. sinaica showed cytotoxic properties towards human liver cancer cells (HepG2) with IC50 values of 126.65 and 220.21 µg/mL, respectively. The lipophilic extract revealed antioxidant activity in the DPPH assay with an IC50 value of 2679 ± 128.13 µg/mL and in the FRAP assay, moderate antioxidant potential was expressed as 44.30 ± 3.73 µM Trolox equivalent/mg sample. The molecular docking studies revealed that ꞵ-amyrin acetate, α -tocopherol, γ-sitosterol, and n-pentacosaneachieved the best docking scores for NADPH oxidase, phosphoinositide-3 kinase, and protein kinase B. Consequently, M. sinaica essential oil and lipophilic extract can be employed as a viable management strategy for oxidative stress conditions and the formulation of improved cytotoxic treatment regimens.
Collapse
|
5
|
Aly SH, El-Hassab MA, Elhady SS, Gad HA. Comparative Metabolic Study of Tamarindus indica L.'s Various Organs Based on GC/MS Analysis, In Silico and In Vitro Anti-Inflammatory and Wound Healing Activities. PLANTS (BASEL, SWITZERLAND) 2022; 12:87. [PMID: 36616217 PMCID: PMC9824397 DOI: 10.3390/plants12010087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The chemical composition of the n-hexane extract of Tamarindus indica's various organs-bark, leaves, seeds, and fruits (TIB, TIL, TIS, TIF)-was investigated using gas chromatography-mass spectrometry (GC/MS) analysis. A total of 113 metabolites were identified, accounting for 93.07, 83.17, 84.05, and 85.08 % of the total identified components in TIB, TIL, TIS, and TIF, respectively. Lupeol was the most predominant component in TIB and TIL, accounting for 23.61 and 22.78%, respectively. However, n-Docosanoic acid (10.49%) and methyl tricosanoate (7.09%) were present in a high percentage in TIS. However, α-terpinyl acetate (7.36%) and α-muurolene (7.52%) were the major components of TIF n-hexane extract. By applying a principal component analysis (PCA) and hierarchal cluster analysis (HCA) to GC/MS-based metabolites, a clear differentiation of Tamarindus indica organs was achieved. The anti-inflammatory activity was evaluated in vitro on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In addition, the wound healing potential for the n-hexane extract of various plant organs was assessed using the in-vitro wound scratch assay using Human Skin Fibroblast cells. The tested extracts showed considerable anti-inflammatory and wound-healing activities. At a concentration of 10 µg/mL, TIL showed the highest nitric oxide (NO) inhibition by 53.97 ± 5.89%. Regarding the wound healing potential, after 24 h, TIB, TIL, TIS, and TIF n-hexane extracts at 10 g/mL reduced the wound width to 1.09 ± 0.04, 1.12 ± 0.18, 1.09 ± 0.28, and 1.41 ± 0.35 mm, respectively, as compared to the control cells (1.37 ± 0.15 mm). These findings showed that the n-hexane extract of T. indica enhanced wound healing by promoting fibroblast migration. Additionally, a docking study was conducted to assess the major identified phytoconstituents' affinity for binding to glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8), and nitric oxide synthase (iNOS). Lupeol showed the most favourable binding affinity to GSK3-β and iNOS, equal to -12.5 and -13.7 Kcal/mol, respectively, while methyl tricosanoate showed the highest binding affinity with MMP-8 equal to -13.1 Kcal/mol. Accordingly, the n-hexane extract of T. indica's various organs can be considered a good candidate for the management of wound healing and inflammatory conditions.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Mahmoud A. El-Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| |
Collapse
|