1
|
Lopes BV, Maron GK, Masteghin MG, Balboni RDC, Silva SRP, Carreno NLV. Direct-detection of glyphosate in drinking water via a scalable and low-cost laser-induced graphene sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39713940 DOI: 10.1039/d4ay01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The use of pesticides has significantly increased and proliferated following the technological advancements established by the green revolution, aimed at boosting agricultural productivity. The extensive use of man-made chemicals as fertilizer and pesticides has consequently led to large-scale application, which has led to a number of environmental and human health problems. This study has helped to develop a laser-induced graphene (LIG) sensor for the detection of the most widely used herbicide in the world, glyphosate. The electrochemical sensor developed is based on a three-dimensional porous and fibrous structure with nanosheets, making it suitable for scalable manufacture. The study was conducted utilising a linear voltammetry technique and demonstrates the potential to identify glyphosate with good sensitivity. The sensor exhibited detection and quantification limits of 2.7 μmol L-1 and 9.0 μmol L-1, respectively, and showed good selectivity without significant interference from other elements. The sensor presents advantages suitable for scalable production, with case studies in screening of glyphosate-contaminated samples.
Collapse
Affiliation(s)
- Bruno Vasconcellos Lopes
- Competence Centre on Digital Agriculture, São Leopoldo, RS, Brazil
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Guilherme Kurz Maron
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| | | | | | - S Ravi P Silva
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, UK
| | - Neftali Lenin Villarreal Carreno
- Competence Centre on Digital Agriculture, São Leopoldo, RS, Brazil
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Ruan P, Yin S, Zhang Y. The impact of agricultural insurance on consumer food safety: empirical evidence from provincial-level data in China. Front Nutr 2024; 11:1392711. [PMID: 38812934 PMCID: PMC11133671 DOI: 10.3389/fnut.2024.1392711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
In the exploration of the efficacy of agricultural subsidy policies, agricultural insurance, as a key element of this policy system, has garnered widespread attention for its potential impact on consumer food safety. This paper delves into the influence of agricultural insurance on the safety of food consumed by individuals, based on provincial panel data in China from 2011 to 2021. The findings indicate that agricultural insurance significantly reduces the incidence of foodborne disease and enhances food safety. Mediating effect tests reveal that agricultural insurance effectively boosts food safety through two key pathways: promoting innovation in agricultural technology and reducing environmental pollution. Moreover, the analysis of moderating effects highlights that increased consumer confidence positively enhances the impact of agricultural insurance. Heterogeneity tests further show that in the provinces with higher levels of agricultural development and stronger government support for agriculture, the role of agricultural insurance in improving food safety is more pronounced. This research not only empirically verifies the effectiveness of agricultural insurance in enhancing food safety but also provides robust theoretical support and practical guidance for the precise formulation and effective implementation of agricultural subsidy policies, particularly agricultural insurance policies, offering significant reference value for policy-makers.
Collapse
Affiliation(s)
- Peiheng Ruan
- School of Economics and Management, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
4
|
Patel R, Menon J, Kumar S, Nóbrega MB, Patel DA, Sakure AA, Vaja MB. Modern day breeding approaches for improvement of castor. Heliyon 2024; 10:e27048. [PMID: 38463846 PMCID: PMC10920369 DOI: 10.1016/j.heliyon.2024.e27048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Castor (Ricinus communis L.) is an industrially important oil producing crop belongs to Euphorbiaceae family. Castor oil has unique chemical properties make it industrially important crop. It is a member of monotypic genus even though it has ample amount of variability. Using this variability, conventionally many varieties and hybrids have been developed. But, like other crops, the modern and unconventional methods of crop improvement has not fully explored in castor. This article discusses the use of polyploidy induction, distant/wide hybridization and mutation breeding as tools for generating variety. Modern approaches accelerate the speed of crop breeding as an alternative tool. To achieve this goal, molecular markers are employed in breeding to capture the genetic variability through molecular analysis and population structuring. Allele mining is used to trace the evolution of alleles, identify new haplotypes and produce allele specific markers for use in marker aided selection using Genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping. Plant genetic transformation is a rapid and effective mode of castor improvement is also discussed here. The efforts towards developing stable regeneration protocol provide a wide range of utility like embryo rescue in distant crosses, development of somaclonal variation, haploid development using anther culture and callus development for stable genetic transformation has reviewed in this article. Omics has provided intuitions to the molecular mechanisms of (a)biotic stress management in castor along with dissected out the possible genes for improving the yield. Relating genes to traits offers additional scientific inevitability leading to enhancement and sympathetic mechanisms of yield improvement and several stress tolerance.
Collapse
Affiliation(s)
- Rumit Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
- Department of Genetics & Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, 388110, India
| | - Juned Menon
- Department of Genetics & Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, 388110, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Márcia B.M. Nóbrega
- Embrapa Algodão, Rua Oswaldo Cruz, nº 1.143, Centenário, CEP 58428-095, Campina Grande, PB, Brazil
| | - Dipak A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Mahesh B. Vaja
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| |
Collapse
|
5
|
Efficient genetic improvement of orphan crops cannot follow the old path. Nat Commun 2024; 15:321. [PMID: 38191480 PMCID: PMC10774366 DOI: 10.1038/s41467-023-44458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
|
6
|
Bhardwaj H, Khute S, Sahu RK, Jangde RK. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr Drug Metab 2024; 25:248-265. [PMID: 38918986 DOI: 10.2174/0113892002291778240610073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Sulekha Khute
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, 249161, India
| | - Rajendra Kumar Jangde
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
7
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
8
|
Marone D, Mastrangelo AM, Borrelli GM. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int J Mol Sci 2023; 24:ijms24087122. [PMID: 37108285 PMCID: PMC10138802 DOI: 10.3390/ijms24087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.
Collapse
Affiliation(s)
- Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
9
|
Wang Y, Tang Q, Pu L, Zhang H, Li X. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. FRONTIERS IN PLANT SCIENCE 2022; 13:1049803. [PMID: 36589095 PMCID: PMC9800880 DOI: 10.3389/fpls.2022.1049803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Maize (Zea mays) is one of the most important food crops in the world with the greatest global production, and contributes to satiating the demands for human food, animal feed, and biofuels. With population growth and deteriorating environment, efficient and innovative breeding strategies to develop maize varieties with high yield and stress resistance are urgently needed to augment global food security and sustainable agriculture. CRISPR-Cas-mediated genome-editing technology (clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated)) has emerged as an effective and powerful tool for plant science and crop improvement, and is likely to accelerate crop breeding in ways dissimilar to crossbreeding and transgenic technologies. In this review, we summarize the current applications and prospects of CRISPR-Cas technology in maize gene-function studies and the generation of new germplasm for increased yield, specialty corns, plant architecture, stress response, haploid induction, and male sterility. Optimization of gene editing and genetic transformation systems for maize is also briefly reviewed. Lastly, the challenges and new opportunities that arise with the use of the CRISPR-Cas technology for maize genetic improvement are discussed.
Collapse
Affiliation(s)
- Youhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhai Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192625. [PMID: 36235491 PMCID: PMC9573444 DOI: 10.3390/plants11192625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|
11
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|