1
|
Bennur PL, O’Brien M, Fernando SC, Doblin MS. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:52-75. [PMID: 38652155 PMCID: PMC11659184 DOI: 10.1093/jxb/erae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasizing the meticulous choice of explants (e.g. embryonic/meristematic tissues), plant growth regulators (e.g. synthetic cytokinins), and use of novel regeneration-enabling methods to deliver morphogenic genes (e.g. GRF/GIF chimeras and nanoparticles), which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.
Collapse
Affiliation(s)
- Praveen Lakshman Bennur
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Martin O’Brien
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Shyama C Fernando
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Monika S Doblin
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
2
|
Zeng T, Zhu L, Su W, Gu L, Wang H, Du X, Zhu B, Wang C, Wu D. Comparative Analysis of Ca 2+/Cation Antiporter Gene Family in Rosa roxburghii and Enhanced Calcium Stress Tolerance via Heterologous Expression of RrCAX1a in Tobacco. PLANTS (BASEL, SWITZERLAND) 2024; 13:3582. [PMID: 39771280 PMCID: PMC11677073 DOI: 10.3390/plants13243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa roxburghii, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear. The Ca2+/cation antiporter (CaCA) superfamily plays a vital role in the transport of Ca2+ and other cations and is crucial for plant tolerance to metal stress. However, the roles and evolutionary significance of the CaCA superfamily members in R. roxburghii remain poorly understood. This study identified 22 CaCA superfamily genes in R. roxburghii, categorized into four subfamilies. The gene structures of these RrCaCAs show considerable conservation across related species. Selection pressure analysis revealed that all RrCaCAs are subject to purifying selection. The promoter regions of these genes contain numerous hormone-responsive and stress-related elements. qRT-PCR analyses demonstrated that H+/cation exchanger (CAX) RrCAX1a and RrCAX3a were highly responsive to Ca2+ stress, cation/Ca2+ exchanger (CCX) RrCCX4 to Mg2+ stress, and RrCCX11a to Na+ stress. Subcellular localization indicated that RrCAX1a is localized to the plant cell membrane, and its stable transformation in tobacco confirmed its ability to confer enhanced resistance to heavy Ca2+ stresses, highlighting its crucial role in the high-calcium tolerance mechanisms of R. roxburghii. This research establishes a foundation for further molecular-level functional analyses of the adaptation mechanisms of R. roxburghii to high-calcium environments.
Collapse
Affiliation(s)
- Tuo Zeng
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Wenwen Su
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| | - Lei Gu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Di Wu
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| |
Collapse
|
3
|
Matsuda K. Understanding pyrethrin biosynthesis: toward and beyond natural pesticide overproduction. Biochem Soc Trans 2024; 52:1927-1937. [PMID: 39136197 DOI: 10.1042/bst20240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pyrethrins are natural insecticides biosynthesised by Asteraceae plants, such as Tanacetum cinerariifolium and have a long history, dating back to ancient times. Pyrethrins are often used as low-persistence and safe insecticides to control household, horticultural, and agricultural insect pests. Despite its long history of use, pyrethrin biosynthesis remains a mystery, presenting a significant opportunity to improve yields and meet the growing demand for organic agriculture. To achieve this, both genetic modification and non-genetic methods, such as chemical activation and priming, are indispensable. Plants use pyrethrins as a defence against herbivores, but pyrethrin biosynthesis pathways are shared with plant hormones and signal molecules. Hence, the insight that pyrethrins may play broader roles than those traditionally expected is invaluable to advance the basic and applied sciences of pyrethrins.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
4
|
Bélanger JG, Copley TR, Hoyos-Villegas V, Charron JB, O'Donoughue L. A comprehensive review of in planta stable transformation strategies. PLANT METHODS 2024; 20:79. [PMID: 38822403 PMCID: PMC11140912 DOI: 10.1186/s13007-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Plant transformation remains a major bottleneck to the improvement of plant science, both on fundamental and practical levels. The recalcitrant nature of most commercial and minor crops to genetic transformation slows scientific progress for a large range of crops that are essential for food security on a global scale. Over the years, novel stable transformation strategies loosely grouped under the term "in planta" have been proposed and validated in a large number of model (e.g. Arabidopsis and rice), major (e.g. wheat and soybean) and minor (e.g. chickpea and lablab bean) species. The in planta approach is revolutionary as it is considered genotype-independent, technically simple (i.e. devoid of or with minimal tissue culture steps), affordable, and easy to implement in a broad range of experimental settings. In this article, we reviewed and categorized over 300 research articles, patents, theses, and videos demonstrating the applicability of different in planta transformation strategies in 105 different genera across 139 plant species. To support this review process, we propose a classification system for the in planta techniques based on five categories and a new nomenclature for more than 30 different in planta techniques. In complement to this, we clarified some grey areas regarding the in planta conceptual framework and provided insights regarding the past, current, and future scientific impacts of these techniques. To support the diffusion of this concept across the community, this review article will serve as an introductory point for an online compendium about in planta transformation strategies that will be available to all scientists. By expanding our knowledge about in planta transformation, we can find innovative approaches to unlock the full potential of plants, support the growth of scientific knowledge, and stimulate an equitable development of plant research in all countries and institutions.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada.
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada.
| | - Tanya Rose Copley
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada
| | - Valerio Hoyos-Villegas
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada
| | - Louise O'Donoughue
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada.
| |
Collapse
|
5
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, Zheng R, Wang Y, Wang C. TcMYB8, a R3-MYB Transcription Factor, Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2022; 23:12186. [PMID: 36293043 PMCID: PMC9602545 DOI: 10.3390/ijms232012186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Zeng T, Li JW, Xu ZZ, Zhou L, Li JJ, Yu Q, Luo J, Chan ZL, Jongsma MA, Hu H, Wang CY. TcMYC2 regulates Pyrethrin biosynthesis in Tanacetum cinerariifolium. HORTICULTURE RESEARCH 2022; 9:uhac178. [PMID: 36338845 PMCID: PMC9627524 DOI: 10.1093/hr/uhac178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 05/13/2023]
Abstract
Pyrethrins constitute a class of terpene derivatives with high insecticidal activity and are mainly synthesized in the capitula of the horticulturally important plant, Tanacetum cinerariifolium. Treatment of T. cinerariifolium with methyl jasmonate (MeJA) in the field induces pyrethrin biosynthesis, but the mechanism linking MeJA with pyrethrin biosynthesis remains unclear. In this study, we explored the transcription factors involved in regulating MeJA-induced pyrethrin biosynthesis. A single spray application of MeJA to T. cinerariifolium leaves rapidly upregulated the expression of most known pyrethrin biosynthesis genes and subsequently increased the total pyrethrin content in the leaf. A continuous 2-week MeJA treatment resulted in enhanced pyrethrin content and increased trichome density. TcMYC2, a key gene in jasmonate signaling, was screened at the transcriptome after MeJA treatment. TcMYC2 positively regulated expression of the pyrethrin biosynthesis genes TcCHS, TcAOC, and TcGLIP by directly binding to E-box/G-box motifs in the promoters. The stable overexpression of TcMYC2 in T. cinerariifolium hairy roots significantly increased the expression of TcAOC and TcGLIP. Further transient overexpression and viral-induced gene-silencing experiments demonstrated that TcMYC2 positively promoted pyrethrin biosynthesis. Collectively, the results reveal a novel molecular mechanism for MeJA-induced pyrethrin biosynthesis in T. cinerariifolium involving TcMYC2.
Collapse
Affiliation(s)
| | | | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu-Long Chan
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
| | - Hao Hu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|