1
|
Akpojotor U, Oluwole O, Oyatomi O, Paliwal R, Abberton M. Research and developmental strategies to hasten the improvement of orphan crops. GM CROPS & FOOD 2025; 16:46-71. [PMID: 39718143 DOI: 10.1080/21645698.2024.2423987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/25/2024]
Abstract
To feed the world's expanding population, crop breeders need to increase agricultural productivity and expand major crops base. Orphan crops are indigenously important crops with great potential because they are climate resilient, highly nutritious, contain nutraceutical compounds, and can improve the livelihood of smallholder farmers and consumers, but they have received little or no scientific attention. This review article examines several research and developmental strategies for hastening the improvement of these crops so that they can effectively play their role in securing food and nutrition. The integration of both research and developmental approaches will open up modern opportunities for crop improvement. We summarized ways in which advanced tools in phenotyping and genotyping, using high-throughput processes, can be used to accelerate their improvement. Finally, we suggest roles the genebanks can play in improving orphan crops, as the utilization of plant genetic resources is important for the genetic improvement of a crop.
Collapse
Affiliation(s)
- Ufuoma Akpojotor
- Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Oyo state, Nigeria
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, Osun state, Nigeria
| | - Olubusayo Oluwole
- Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Oyo state, Nigeria
| | - Olaniyi Oyatomi
- Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Oyo state, Nigeria
| | - Rajneesh Paliwal
- Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Oyo state, Nigeria
| | - Michael Abberton
- Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Oyo state, Nigeria
| |
Collapse
|
2
|
Nainggolan EA, Banout J, Urbanova K. Recent Trends in the Pre-Drying, Drying, and Post-Drying Processes for Cassava Tuber: A Review. Foods 2024; 13:1778. [PMID: 38891006 PMCID: PMC11171685 DOI: 10.3390/foods13111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Cassava tuber is an essential staple crop in tropical regions with versatile applications in the food, feed, and industrial sectors. However, its high moisture content and perishable nature necessitate efficient preservation methods to extend its shelf life and enhance its value. Pre-drying, drying, and post-drying processes play pivotal roles in maintaining the quality and usability of cassava products. This review comprehensively examines the current status and future directions in the pre-drying, drying, and post-drying processes of cassava tuber. Various pre-drying or pretreatment methods and drying techniques are evaluated for their impacts on drying kinetics and product quality. Additionally, challenges and limitations in achieving high-quality processing of cassava flour are identified. Future directions in cassava drying methods emphasize the integration of combined pre-drying and drying techniques to optimize resource utilization and processing efficiency. Furthermore, the adoption of advanced online measurement and control technologies in drying equipment is highlighted for real-time monitoring and optimization of drying parameters. The importance of optimizing existing processes to establish a comprehensive cassava industrial chain and foster the development of the cassava deep-processing industry is emphasized. This review provides valuable insights into the current trends and future prospects in cassava drying technologies, aiming to facilitate sustainable and efficient utilization of cassava resources for various applications.
Collapse
Affiliation(s)
- Ellyas Alga Nainggolan
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
- Department of Bioprocess Engineering, Faculty of Biotechnology, Institut Teknologi Del, Jl. Sisingamangaraja, Sitoluama, Laguboti, Toba 22381, Indonesia
| | - Jan Banout
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
| | - Klara Urbanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (E.A.N.); (K.U.)
| |
Collapse
|
3
|
Yao X, Liang X, Chen Q, Liu Y, Wu C, Wu M, Shui J, Qiao Y, Zhang Y, Geng Y. MePAL6 regulates lignin accumulation to shape cassava resistance against two-spotted spider mite. FRONTIERS IN PLANT SCIENCE 2023; 13:1067695. [PMID: 36684737 PMCID: PMC9853075 DOI: 10.3389/fpls.2022.1067695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The two-spotted spider mite (TSSM) is a devastating pest of cassava production in China. Lignin is considered as an important defensive barrier against pests and diseases, several genes participate in lignin biosynthesis, however, how these genes modulate lignin accumulation in cassava and shape TSSM-resistance is largely unknown. METHODS To fill this knowledge gap, while under TSSM infestation, the cassava lignin biosynthesis related genes were subjected to expression pattern analysis followed by family identification, and genes with significant induction were used for further function exploration. RESULTS Most genes involved in lignin biosynthesis were up-regulated when the mite-resistant cassava cultivars were infested by TSSM, noticeably, the MePAL gene presented the most vigorous induction among these genes. Therefore, we paid more attention to dissect the function of MePAL gene during cassava-TSSM interaction. Gene family identification showed that there are 6 MePAL members identified in cassava genome, further phylogenetic analysis, gene duplication, cis-elements and conserved motif prediction speculated that these genes may probably contribute to biotic stress responses in cassava. The transcription profile of the 6 MePAL genes in TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation pattern. To further elucidate the potential correlation between MePAL expression and TSSM-resistance, the most strongly induced gene MePAL6 were silenced using virus-induced gene silencing (VIGS) assay, we found that silencing of MePAL6 in SC9 not only simultaneously suppressed the expression of other lignin biosynthesis genes such as 4-coumarate--CoA ligase (4CL), hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but also resulted in decrease of lignin content. Ultimately, the suppression of MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance. DISCUSSION This study accurately identified MePAL6 as critical genes in conferring cassava resistance to TSSM, which could be considered as promising marker gene for evaluating cassava resistance to insect pest.
Collapse
Affiliation(s)
- Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jun Shui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yao Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yue Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
4
|
Zhang Y, Liu Y, Liang X, Wu C, Liu X, Wu M, Yao X, Qiao Y, Zhan X, Chen Q. Exogenous methyl jasmonate induced cassava defense response and enhanced resistance to Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:45-60. [PMID: 36635606 DOI: 10.1007/s10493-022-00773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/30/2022] [Indexed: 05/21/2023]
Abstract
Exogenous application of methyl jasmonate (MeJA) could activate plant defense response against the two-spotted spider mite (TSSM), Tetranychus urticae Koch, in different plants. However, whether MeJA can also serve as an elicitor in cassava (Manihot esculenta Crantz) remains unknown. In this study, induced defense responses were investigated in TSSM-resistant cassava variety C1115 and TSSM-susceptible cassava variety KU50 when applied with MeJA. The performance of TSSM feeding on cassava plants that were pre-treated with various concentrations of MeJA was first evaluated. Subsequently, the activities of antioxidative enzymes (superoxide dismutase and catalase), detoxification enzymes (glutathione S-transferase, cytochrome P450 and carboxylesterase) and digestive enzymes (protease, amylase and invertase) in TSSM were analyzed at days 1, 2, 4 and 8 post-feeding. The results showed that MeJA treatment can induce cassava defense responses to TSSM in terms of reducing egg production and adult longevity as well as slowing development and prolonging the egg stage. Noticeably, C1115 exhibited stronger inhibition of TSSM development and reproduction than KU50. In addition, the activities of all the tested enzymes were induced in both C1115 and KU50, the most in C1115. We conclude that exogenous methyl jasmonate can induce cassava defense responses and enhance resistance to TSSM.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering / Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China.
| | - Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China.
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China
| | - Xiaoqiang Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China
| | - Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China
| | - Xue Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering / Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science / Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, 572000, China.
| |
Collapse
|
5
|
Liang X, Chen Q, Liu Y, Wu C, Li K, Wu M, Yao X, Qiao Y, Zhang Y, Geng Y. Identification of cassava germplasms resistant to two-spotted spider mite in China: From greenhouse large-scale screening to field validation. FRONTIERS IN PLANT SCIENCE 2022; 13:1054909. [PMID: 36570903 PMCID: PMC9768451 DOI: 10.3389/fpls.2022.1054909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/18/2022] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Utilization of resistant germplasm is considered as an effective, economical and eco-friendly strategy for cassava pest management. Tetranychus urticae, known as the two-spotted spider mite (TSSM), is a devastating pest in Asian cassava planting countries as well as in China. However, the resistant levels of abundant cassava germplasms to TSSM remains largely unknown. METHODS To fill this knowledge gap, we conducted screening of 202 cassava germplasm for resistance to TSSM in China based on the classification of mite damage phenotype, under both greenhouse and field conditions. RESULTS The three rounds of large-scale greenhouse experiments had identified two highly resistant (HR) varieties (C1115 and MIANDIAN), five resistant (R) varieties (SC5, SC9, SC15, COLUMBIA-4D and LIMIN) and five highly susceptible (HS) varieties (KU50, BREAD, SC205, TMS60444 and BRA900), besides, these 'HR' and 'R' varieties would significantly repress the normal development and reproduction of TSSM. In addition, the 12 cassava varieties selected from the greenhouse screening were further subjected to consecutive five years of field validation at Danzhou, Wuming and Baoshan. The seven resistant varieties not only exhibited stable TSSM-resistance performance across the three field environments, but also possessed the same resistant levels as the greenhouse identification, while the resistant varieties SC5 was an exception, which was identified as moderate resistant in Baoshan, indicating the variety-environment interaction may affect its resistance. Furthermore, regional yield estimation suggested that the higher the resistance level was, the better capacity in reducing the yield losses. DISCUSSION This study demonstrated that the TSSM-resistant varieties could be considered as ideal materials in mite control or in future breeding programme of mite-resistant cassava plant.
Collapse
Affiliation(s)
- Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yao Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yue Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|