1
|
Rabie M, Aseel DG, Younes HA, Behiry SI, Abdelkhalek A. Transcriptional responses and secondary metabolites variation of tomato plant in response to tobacco mosaic virus infestation. Sci Rep 2024; 14:19565. [PMID: 39174617 PMCID: PMC11341961 DOI: 10.1038/s41598-024-69492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
The present study focused on the impact of infection with the tobacco mosaic virus (TMV). Specifically, changes in phytochemicals and gene activity related to pathogenesis-related and phenylpropanoid pathway genes in tomato plants (Solanum lycopersicum L.) during a period of 2-14 days post-inoculation (dpi). According to TEM investigation and coat protein sequence analysis, the purified TMV Egyptian AM isolate (PP133743) has a rod-shaped structure with a diameter of around 110 nm. The RT-qPCR analysis revealed that PR-1 showed an initial increase after TMV infection, as seen in the time-course analysis. In contrast, PR-2 was consistently elevated throughout the infection, suggesting a stronger reaction to the virus and suppressing PAL expression at 6 to 14 dpi. The expression levels of HQT and CHS transcripts exhibited alternating patterns of up-regulation and down-regulation at different time intervals. The HPLC and GC-MS analysis of control- and TMV-infected tomato extracts revealed that different phenolic, flavonoid, and fatty acid compounds were increased (such as naringenin, rutin, flavone, ferulic acid, and pyrogallol) or significantly decreased (such as salicylic acid and chlorogenic acid) after TMV infection. The ability of TMV to inhibit most polyphenolic compounds could potentially accelerate the viral life cycle. Consequently, focusing on enhancing the levels of such suppressed compounds may be critical for developing plant viral infection management strategies.
Collapse
Affiliation(s)
- Mona Rabie
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Hosny A Younes
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Kamiloglu S, Koc Alibasoglu E, Acoglu Celik B, Celik MA, Bekar E, Unal TT, Kertis B, Akpinar Bayizit A, Yolci Omeroglu P, Copur OU. Bioaccessibility of Carotenoids and Polyphenols in Organic Butternut Squash ( Cucurbita moschata): Impact of Industrial Freezing Process. Foods 2024; 13:239. [PMID: 38254540 PMCID: PMC10814222 DOI: 10.3390/foods13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Butternut squash (Cucurbita moschata) is recognized as a functional food due to its abundant content of health-promoting compounds, including carotenoids and polyphenols. The aim of this study was to examine the impact of industrial freezing stages on the bioaccessibility of carotenoids and polyphenols in organic Butternut squash supplied for baby food. Identification and quantification of bioactive compounds were carried out using UPLC-ESI-MS/MS and HPLC-PDA, respectively. The results revealed that industrial freezing of squash did not cause a significant change in bioaccessibility of α- and β-carotene. On the other hand, frozen squash was found to contain higher levels of bioaccessible epicatechin (main flavonoid) (117.5 mg/kg) and syringic acid (main phenolic acid) (32.0 mg/kg) compared to fresh internal fruit. Moreover, the levels of bioaccessible epicatechin and syringic acid were found to be the highest in discarded pomace and seed sample (454.0 and 132.4 mg/kg, respectively). Overall, this study emphasized that industrial freezing could be an effective strategy for preserving carotenoid bioaccessibility in organic Butternut squash, while also enhancing the levels of bioaccessible polyphenols. In addition, we also demonstrated that pomace and seed, which are discarded as waste, have significant potential to be utilized as a food source rich in bioactive compounds.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Elif Koc Alibasoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Busra Acoglu Celik
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - M. Alpgiray Celik
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye
| | - Erturk Bekar
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Taha Turgut Unal
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Buket Kertis
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
| | - Arzu Akpinar Bayizit
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Perihan Yolci Omeroglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - O. Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| |
Collapse
|
3
|
Wang M, Zhu L, Zhang C, Zhou H, Tang Y, Cao S, Chen J, Zhang J. Transcriptomic-Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. Int J Mol Sci 2024; 25:619. [PMID: 38203792 PMCID: PMC10779420 DOI: 10.3390/ijms25010619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiancheng Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.W.); (L.Z.); (C.Z.); (H.Z.); (Y.T.); (S.C.); (J.C.)
| |
Collapse
|
4
|
Khamis WM, Behiry SI, Marey SA, Al-Askar AA, Amer G, Heflish AA, Su Y, Abdelkhalek A, Gaber MK. Phytochemical analysis and insight into insecticidal and antifungal activities of Indian hawthorn leaf extract. Sci Rep 2023; 13:17194. [PMID: 37821483 PMCID: PMC10567697 DOI: 10.1038/s41598-023-43749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Fungicides or insecticides are popular means of controlling a variety of pathogens and insect pests; however, they can cause harmful effects on both human health and the environment. Different researchers have suggested using plant extracts, which have shown promise in managing fungi and insects. The purpose of this investigation was to explore the antifungal activities of an acetone extract made from the leaves of Indian Hawthorn (HAL) against phytopathogens that are known to harm maize crops, Fusarium verticillioides (OQ820154) and Rhizoctonia solani (OQ820155), and to evaluate the insecticidal property against Aphis gossypii Glover aphid. The HAL extract demonstrated significant antifungal activity against the two fungal pathogens tested, especially at the high dose of 2000 µg/mL. Laboratory tests on the LC20 of HAL extract (61.08 mg/L) versus buprofezin 25% WP (0.0051 mg/L) were achieved on A. gossypii Glover. HAL extract diminished the nymph's production over 72 h and their total reproductive rate. This extract was like buprofezin 25% WP in decreasing the daily reproductive rate, reproductive period, and mean survival percentage. Nevertheless, the newly-born nymphs of treated females with HAL extract attained the highest reduction in survival percentage at 46.00%. Equalized prolongations on the longevity of nymphs to 9.33, 8.33, and 7 days and the total life cycle to 15.00, 14.00, and 12.67 days were realized by HAL extract, buprofezin 25% WP, and the control, respectively. The olfactory choice test on the aphids showed the minimum attraction rate to HAL extract. The HPLC of HAL extract comprised an abundance of phenolic compounds (ferulic acid, gallic acid, 4-hydroxybenzoic acid, salicylic acid, ellagic acid, and pyrogallol), and the concentrations of these compounds vary widely, with salicylic acid being the most concentrated at 25.14 mg/mL. Among the flavonoids, epicatechin has the highest concentration at 11.69 mg/mL. The HAL extract GC-MS consists of various organic compounds, including sesquiterpenes, cyclopropenes, fatty acids, steroids, alcohols, ketones, esters, bufadienolides, opioids, and other organic compounds. The most abundant compounds in the sample are n-hexadecanoic acid (12.17%), followed by 5α, 7αH, 10α-eudesm-11-en-1α-ol (9.43%), and cis-13-octadecenoic acid (5.87%). Based on the findings, it can be inferred that the HAL extract may be a viable option for plants to combat both fungal and insect infestations. This presents an encouraging prospect for utilizing a natural and sustainable approach toward long-term pest management in plants.
Collapse
Affiliation(s)
- Wael M Khamis
- Plant Protection Research Institute, Agriculture Research Center, Al-Sabhia, Alexandria, 21616, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Samy A Marey
- King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ghoname Amer
- Plant Pathology Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed A Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Yiming Su
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 84341, USA
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Alexandria, Egypt.
| | - Mohamed K Gaber
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
5
|
Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S, Behiry SI, Elbeaino T, Abdelkhalek A. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate ( Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112103. [PMID: 37299082 DOI: 10.3390/plants12112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Sherien Sobhy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa A Samy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Esraa Hamdy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano Bari, Italy
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| |
Collapse
|
6
|
Elbeshehy EKF, Hassan WM, Baeshen AA. Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010139. [PMID: 36615333 PMCID: PMC9822145 DOI: 10.3390/molecules28010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
We investigated the roles of different concentrations of chemical synthetic spherical silver nanoparticles (AgNPs) in protecting pepper seedlings of the Mecca region, which were naturally and artificially infected by the pepper mild mottle virus (PMMoV). The virus shows many infection symptoms, including pepper leaf deformation with filiform leaves and severe mosaic symptoms. Our study focused on the antiviral activity of different concentrations of spherical nanoparticles in controlling PMMoV infecting pepper seedlings. PMMoV identification was confirmed via DAS-ELISA using the following antiserum: PMMoV, cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), tomato mosaic virus (ToMV), potato virus Y (PVY), and tomato spotted wilt virus (TSWV). The presence of PMMoV was confirmed using electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). We evaluated the effects of exogenously applied different concentrations of AgNPs on CMV infection rate, infection severity, virus concentration, and the concentrations of photosynthetic pigments chlorophyll a, chlorophyll b, carotenoid content, phenolic compounds, and protein components in virus-infected plant cells that were treated with three different concentration of nanoparticles (200, 300, and 400 µg/L) compared to the positive and negative control.
Collapse
Affiliation(s)
- Esam K. F. Elbeshehy
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
- Correspondence:
| | - Wael M. Hassan
- Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
- Department of Biology, Quwayiyah College of Science and Humanities, Shaqra University, Riyadh 19257, Saudi Arabia
| | - Areej A. Baeshen
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
7
|
Abdelkhalek A, El-Gendi H, Alotibi FO, Al-Askar AA, Elbeaino T, Behiry SI, Abd-Elsalam KA, Moawad H. Ocimum basilicum-Mediated Synthesis of Silver Nanoparticles Induces Innate Immune Responses against Cucumber Mosaic Virus in Squash. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202707. [PMID: 36297731 PMCID: PMC9609463 DOI: 10.3390/plants11202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Cucumber mosaic virus (CMV) causes a significant threat to crop output sustainability and human nutrition worldwide, since it is one of the most prevalent plant viruses infecting most kinds of plants. Nowadays, different types of nanomaterials are applied as a control agent against different phytopathogens. However, their effects against viral infections are still limited. In the current study, the antiviral activities of the biosynthesized silver nanoparticles (Ag-NPs) mediated by aqueous extract of Ocimum basilicum against cucumber mosaic virus in squash (Cucurbita pepo L.) were investigated. The prepared Ag-NPs were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential distribution techniques. DLS, SEM, and TEM analyses showed that the Ag-NPs were spherical, with sizes ranging from 26.3 to 83 nm with an average particle size of about 32.6 nm. FTIR identified different functional groups responsible for the capping and stability of Ag-NPs. The zeta potential was reported as being -11.1 mV. Under greenhouse conditions, foliar sprays of Ag-NPs (100 µg/mL) promoted growth, delayed disease symptom development, and significantly reduced CMV accumulation levels of treated plants compared to non-treated plants. Treatment with Ag-NPs 24 h before or after CMV infection reduced CMV accumulation levels by 92% and 86%, respectively. There was also a significant increase in total soluble carbohydrates, free radical scavenging activity, antioxidant enzymes (PPO, SOD, and POX), as well as total phenolic and flavonoid content. Furthermore, systemic resistance was induced by significantly increasing the expression levels of pathogenesis-related genes (PR-1 and PR-5) and polyphenolic pathway genes (HCT and CHI). These findings suggest that Ag-NPs produced by O. basilicum could be used as an elicitor agent and as a control agent in the induction and management of plant viral infections.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Fatimah O. Alotibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
| | - Hassan Moawad
- Agriculture Microbiology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|