1
|
Zhang L, Song Z, Guo J, Liu W, Li J, Meng Q, Mo J. Isolation, Identification, and Fermentation Optimization of Phytase-Producing Bacteria and Their Effects on Soybean Seedlings. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05154-4. [PMID: 39747740 DOI: 10.1007/s12010-024-05154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate. This study isolated a high-yield phytase strain, identified as Pseudomonas by 16S rDNA and named Pseudomonas sp. S3-10. The fermentation medium composition and conditions were optimized using the single-factor method, Plackett-Burman design (PBD), and response surface methodology (RSM). The results showed that cane molasses, MgCl2, and temperature significantly affected the fermentation biomass of the bacterium. The optimal fermentation conditions were cane molasses and MgCl2 concentrations of 61.80 g/L and 5.94 g/L, respectively, at 34.4 °C. Compared with the unoptimized fermentation conditions, the maximum biomass increased by 160.17 ± 6.26% under the optimized fermentation conditions, reaching 9.13 ± 0.09 × 109 CFU/mL. The pot experiment results showed that Pseudomonas sp. S3-10 has a significant promoting effect on soybean growth. The strain increased the fresh weight and length of soybean seedlings by 112.92 ± 28.41% and 74.02 ± 3.24%, respectively, and increased the phytase activity in the soil and available phosphorus concentration in the plant rhizosphere by 388.15 ± 24.24% and 365.05 ± 91.96%, respectively. This study provided a high-yield phytase strain and its optimal fermentation conditions. The bacterium has significant plant growth-promoting effects and can be used as a new type of biological fertilizer, which is of great significance for reducing phosphorus fertilizer usage, improving phosphorus utilization efficiency, and protecting the ecological environment in agricultural production.
Collapse
Affiliation(s)
- Limin Zhang
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Ziwei Song
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Jingyuan Guo
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Wenjia Liu
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Jie Li
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Qingxin Meng
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Jixian Mo
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China.
| |
Collapse
|
2
|
Wu Y, Yang W, Kou J, Li Q, Liu J, Chi L, Zhang Y, Liu Q, Yu Y. Impacts of phosphate-solubilizing bacterium strain MWP-1 on vegetation growth, soil characteristics, and microbial communities in the Muli coal mining area, China. Front Microbiol 2024; 15:1500070. [PMID: 39703706 PMCID: PMC11655473 DOI: 10.3389/fmicb.2024.1500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, Pseudomonas poae, on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities. The results showed that MWP-1 significantly increased the content of soil available phosphorus by >50%, soil organic matter and total nitrogen by >10%, and significantly increased the height, coverage, and aboveground biomass of vegetation by >40% in comparison with the control (p < 0.05). MWP-1 mainly affected the composition of the soil bacterial communities at the taxonomic level below the phylum. Its impact on soil fungal communities occurred at the phylum and below taxonomic levels. In addition, MWP-1 also significantly improved the diversity of soil bacterial and fungal communities (p < 0.05), and changed their functions. It also significantly altered the relative abundance of genes regulating phosphorus absorption and transport, inorganic phosphorus dissolution and organic phosphorus mineralization in the bacterial community (p < 0.05). It caused a significant increase in the relative abundance of the genes regulating nitrogen fixation and nitrification in nitrogen cycling (p < 0.05), but a significant decrease in the genes regulating phospholipase (p < 0.05). Although sequencing results indicated that Pseudomonas poae did not become the dominant species, its dissolved phosphorus elements can promote plant growth and development, enrich soil nutrient content, and affect the succession of microbial communities, enhance ecosystem stability, with an overall positive effect on soil remediation in the mining area.
Collapse
Affiliation(s)
- Yanru Wu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Wenquan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Qinyao Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaqing Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lu Chi
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yangcan Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yanghua Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Wang T, Wang K, Wang N, Cui D, Li S, Lu Q, Zuo Y. From intercropping to monocropping: The effects of Pseudomonas strain to facilitate nutrient efficiency in peanut and soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109378. [PMID: 39647229 DOI: 10.1016/j.plaphy.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
As an oilseed crop, the yield and quality of peanuts are severely constrained by nutrient deficiencies, particularly in calcareous soils in northern China. Maize-peanut intercropping is an effective strategy to enhance mineral nutrient efficiency in peanuts via plant-microbe interaction, but the underlying mechanisms remain elusive. Here, we conducted experiments using a Pseudomonas strain (Pse.IP6) with diverse beneficial characteristics, which was isolated from the rhizosphere of intercropped peanuts. Additionally, Pse.IP6 exhibits high phylogenetic similarity with the Amplicon Sequence Variants 48 (ASV48) which belongs to Pseudomonas and is positively correlated with Fe in plants and soil in intercropping. To confirm the plant growth-promoting potential of Pse.IP6 and its role in intercropping advantage, we constructed pot experiments. Results revealed that Pse.IP6 promoted shoot growth and root development, as well significantly enhanced SPAD value, net photosynthetic rate, stomatal conductance, and transpiration rate of peanut leaves. Moreover, the application of Pse.IP6 resulted in a notable accumulation of nitrogen (N), phosphorus (P), and potassium (K) in shoot and active iron (Fe) in leaves, accompanied by an increased K-N ratio. The primary reason for the nutrient promotion is the enhancement of the bioavailability of nitrate, ammonium, P, K, and Fe in the rhizosphere. Collectively, our findings demonstrate that Pse.IP6, enriched in intercropping peanut, is a plant growth-promoting bacteria, represented by transferring the intercropping advantage on nutrients activation to monocropping peanuts. Our results offer insights into plant-rhizobacteria interaction mechanisms and therefore provide a rhizobacteria-based pathway to improve nutrient efficiency and productivity of crops.
Collapse
Affiliation(s)
- Tianqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China; Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Kunguang Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Nanqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Dongming Cui
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Shiqin Li
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Qiaofang Lu
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
Li H, Chen S, Wang M, Shi S, Zhao W, Xiong G, Zhou J, Qu J. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous soil. Appl Microbiol Biotechnol 2024; 108:24. [PMID: 38159115 DOI: 10.1007/s00253-023-12850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
On the basis of good phosphate solubilization ability of a lactic acid bacteria (LAB) strain Limosilactobacillus sp. LF-17, bacterial agent was prepared and applied to calcareous soil to solubilize phosphate and promote the growth of maize seedlings in this study. A pot experiment showed that the plant growth indicators, phosphorus content, and related enzyme activity of the maize rhizospheric soils in the LF treatment (treated with LAB) were the highest compared with those of the JP treatment (treated with phosphate solubilizing bacteria, PSB) and the blank control (CK). The types of organic acids in maize rhizospheric soil were determined through LC-MS, and 12 acids were detected in all the treatments. The abundant microbes belonged to the genera of Lysobacter, Massilia, Methylbacillus, Brevundimonas, and Limosilactobacillus, and they were beneficial to dissolving phosphate or secreting growth-promoting phytohormones, which were obviously higher in the LF and JP treatments than in CK as analyzed by high-throughput metagenomic sequencing methods. In addition, the abundance values of several enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, and Carbohydrate-Active Enzymes (CAZys), which were related to substrate assimilation and metabolism, were the highest in the LF treatment. Therefore, aside from phosphate-solubilizing microorganisms, LAB can be used as environmentally friendly crop growth promoters in agriculture and provide another viable option for microbial fertilizers. KEY POINTS: • The inoculation of LAB strain effectively promoted the growth and chlorophyll synthesis of maize seedlings. • The inoculation of LAB strain significantly increased the TP content of maize seedlings and the AP concentration of the rhizosphere soil. • The inoculation of LAB strain increased the abundances of the dominant beneficial functional microbes in the rhizosphere soil.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Siyuan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuoshuo Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjian Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guoyang Xiong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
5
|
García-Berumen JA, Flores de la Torre JA, de los Santos-Villalobos S, Espinoza-Canales A, Echavarría-Cháirez FG, Gutiérrez-Bañuelos H. Phosphorus dynamics and sustainable agriculture: The role of microbial solubilization and innovations in nutrient management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100326. [PMID: 39687549 PMCID: PMC11647644 DOI: 10.1016/j.crmicr.2024.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Phosphorus (P) is an essential element for plant growth, playing a crucial role in various metabolic processes. Despite its importance, phosphorus availability in soils is often restricted due to its tendency to form insoluble complexes, limiting plant uptake. The increasing demand for phosphorus in agriculture, combined with limited global reserves of phosphate rock, has created challenges for sustainable plant production. Additionally, the overuse of chemical phosphorus fertilizers has resulted in environmental degradation, such as eutrophication of water bodies. Increasing agronomic phosphorus (P) efficiency is crucial because of population growth and increased food demand. Hence, microorganisms involved in the P cycle are a promising biotechnological strategy that has gained global interest in recent decades. Microorganisms' solubilization of phosphate rock (PR) is an environmentally sustainable alternative to chemical processing for producing phosphate fertilizers. Phosphorus-solubilizing microorganisms (PSMs), including bacteria and fungi, and their enzymatic processes offer an eco-friendly and sustainable alternative to chemical inputs by converting insoluble phosphorus into forms readily available for plant uptake. Integrating PSMs into agricultural systems presents a promising strategy to reduce dependence on chemical fertilizers, enhance soil health, and contribute to the transition toward more sustainable and resilient agricultural practices. It can be an alternative that reduces the loss of phosphorus in the environment, especially the eutrophication of aquatic systems. This paper explores the challenges of phosphorus availability in agriculture and the potential of microbial phosphorus solubilization as a sustainable alternative to conventional practices.
Collapse
Affiliation(s)
| | - Juan Armando Flores de la Torre
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Carretera Guadalajara km 6 Ejido la Escondida, 98060, Zacatecas, Zacatecas, Mexico
| | | | - Alejandro Espinoza-Canales
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Francisco Guadalupe Echavarría-Cháirez
- Campo Experimental Zacatecas. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP), Km. 24.5 Carretera Zacatecas-Fresnillo, 98500, Calera de Víctor Rosales, Zacatecas, México
| | - Héctor Gutiérrez-Bañuelos
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
6
|
Zhu L, Zhang P, Ma S, Yu Q, Wang H, Liu Y, Yang S, Chen Y. Enhancing carrot ( Daucus carota var. sativa Hoffm.) plant productivity with combined rhizosphere microbial consortium. Front Microbiol 2024; 15:1466300. [PMID: 39633805 PMCID: PMC11615968 DOI: 10.3389/fmicb.2024.1466300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) are an integral part of agricultural practices due to their roles in promoting plant growth, improving soil conditions, and suppressing diseases. However, researches on the PGPR in the rhizosphere of carrots, an important vegetable crop, is relative limited. Therefore, this study aimed to isolate and characterize PGPR strains from the rhizosphere soil of greenhouse-grown carrots, with a focus on their potential to stimulate carrot growth. Methods Through a screening process, 12 high-efficiency phosphorus-solubilizing bacteria, one nitrogen-fixing strain, and two potassium-solubilizing strains were screened. Prominent among these were Bacillus firmus MN3 for nitrogen fixation ability, Acinetobacter pittii MP41 for phosphate solubilization, and Bacillus subtilis PK9 for potassium-solubilization. These strains were used to formulate a combined microbial consortium, N3P41K9, for inoculation and further analysis. Results The application of N3P41K9, significantly enhanced carrot growth, with an increase in plant height by 17.1% and root length by 54.5% in a pot experiment, compared to the control group. This treatment also elevated alkaline-hydrolyzable nitrogen levels by 72.4%, available phosphorus by 48.2%, and available potassium by 23.7%. Subsequent field trials confirmed the efficacy of N3P41K9, with a notable 12.5% increase in carrot yields. The N3P41K9 treatment had a minimal disturbance on soil bacterial diversity and abundance, but significantly increased the prevalence of beneficial genera such as Gemmatimonas and Nitrospira. Genus-level redundancy analysis indicated that the pH and alkali-hydrolyzable nitrogen content were pivotal in shaping the bacterial community composition. Discussion The findings of this study highlight the feasibility of combined microbial consortium in promoting carrot growth, increasing yield, and enriching the root environment with beneficial microbes. Furthermore, these results suggest the potential of the N3P41K9 consortium for soil amelioration, offering a promising strategy for sustainable agricultural practices.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Postdoctoral Research Station, Rushan Hanwei Bio-Technical & Science CO., LTD., Weihai, Shandong, China
| | - Peiqiang Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Quan Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haibing Wang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuexuan Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanling Chen
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
8
|
Lu Z, Wang H, Wang Z, Liu J, Li Y, Xia L, Song S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122200. [PMID: 39182379 DOI: 10.1016/j.jenvman.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Soil reconstruction is a critical step in the restoration of environments affected by mining activities. This paper provides a comprehensive review of the significant role that microbial processes play in expediting soil structure formation, particularly within the context of mining environment restoration. Coal gangue and flotation tailings, despite their low carbon content and large production volumes, present potential substrates for soil reclamation. These coal-based solid waste materials can be utilized as substrates to produce high-quality soil and serve as an essential carbon source to enhance poor soil conditions. However, extracting active organic carbon components from coal-based solid waste presents a significant challenge due to its complex mineral composition. This article offers a thorough review of the soilization process of coal-based solid waste under the influence of microorganisms. It begins by briefly introducing the primary role of in situ microbial remediation technology in the soilization process. It then elaborates on various improvements to soil structure under the influence of microorganisms, including the enhancement of soil aggregate structure and soil nutrients. The article concludes with future recommendations aimed at improving the efficiency of soil reconstruction and restoration, reducing environmental risks, and promoting its application in complex environments. This will provide both theoretical and practical support for more effective environmental restoration strategies.
Collapse
Affiliation(s)
- Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Hengshuang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Zhixiang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Jiazhi Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, 264300, Shandong, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| |
Collapse
|
9
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Zhu Y, Zhou X, Li J, Feng J, Huang Z, Chen B, Liu W, Yang S. Can Functional Micro-organisms Associated with Pumpkin Sizes Be Sought Out from the Soil?-A Comparison of Soil Microbial Community Structures in Rhizospheres between Giant- and Small-Sized Pumpkin Varieties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2258. [PMID: 39204694 PMCID: PMC11359673 DOI: 10.3390/plants13162258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
To elucidate the biological mechanisms driving the growth of various pumpkin varieties to different sizes under identical management conditions while in the same field, the soil microbial community structures in the rhizospheres of giant-pumpkin (GP) and small-pumpkin (SP) varieties were analyzed. The results revealed that a significantly higher abundance of bacterial communities could be detected in the rhizospheres of the giant pumpkin varieties, such as Gemmatimonadota, norank__f__norank__o_Gaiellales, norank__f__Gemmatimonadaceae, Bryobacter, Sphingomonas, norank__f__JG30-KF-AS9, and norank__f__norank__o___Elsterales, than in those of the small-sized pumpkins. Additionally, norank_f__norank_o__Elsterale, Ellin6067, norank_f__67-14, and Chujaibacter were unique dominant soil bacteria genera in the rhizospheres of the giant pumpkins. By contrast, Arthrobacter, norank_f__Roseiflexaceae, unclassified_f__Rhizobiaceae, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Nocardioides, Mycobacterium, norank_f__norank_o__Vicinamibacterales, and Burkholderia-Caballeronia-Paraburkholderia were the unique dominant soil bacterial genera in the rhizospheres of the small pumpkins. Moreover, at the fungal genus level, unclassified_c__Chytridiomycetes, Podosphaera, and Colletotrichum presented significant differences between the giant-pumpkin (GP) and small-pumpkin (SP) rhizospheres. In addition, unclassified__p__Rozellomycota, unclassified__c__Chytridiomycetes, Penicillium, and unclassified__f__Chaetomiaceae were unique dominant soil fungal genera in the rhizospheres of the giant pumpkins (GPs). By contrast, Podosphaera, Colletotrichum, unclassified__f__Plectosphaerellaceae, unclassified__o_Boletales, Scytalidium, unclassified__p__Rozellomycota, and unclassified__o_Agaricales were the unique dominant soil fungal genera in the rhizospheres of the small pumpkins (SPs). PICRUSt and FUNGuild functional prediction analyses revealed that the giant-pumpkin rhizosphere microbial community had significantly increased translation, ribosomal structure and biogenesis, nucleotide transport and metabolism, defense mechanisms, replication, recombination and repair, wood saprotroph, and undefined saprotroph levels. The above results suggest that the soil microbial compositions differed between the rhizospheres of the giant- (GP) and small-pumpkin (SP) varieties, even though the plants were grown in the same field under identical management conditions. Meanwhile, bacterial genera such as norank_f__norank_o__Elsterale, Ellin6067, norank_f__67-14, and Chujaibacter, in addition to fungal genera such as unclassified__p__Rozellomycota, unclassified__c__Chytridiomycetes, Penicillium, and unclassified__f__Chaetomiaceae, can be speculated as potential soil functional micro-organisms associated with improved pumpkin size.
Collapse
Affiliation(s)
- Yu Zhu
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| | - Xinyan Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| | - Jiaoming Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| | - Junqian Feng
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| | - Ziyue Huang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| | - Baoling Chen
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.C.); (W.L.)
| | - Wenjun Liu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.C.); (W.L.)
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, 100 University Road, Nanning 530004, China; (Y.Z.); (X.Z.); (J.L.); (J.F.); (Z.H.)
| |
Collapse
|
11
|
Andreata MFL, Afonso L, Niekawa ETG, Salomão JM, Basso KR, Silva MCD, Alves LC, Alarcon SF, Parra MEA, Grzegorczyk KG, Chryssafidis AL, Andrade G. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2246. [PMID: 39204682 PMCID: PMC11360115 DOI: 10.3390/plants13162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The increasing need for sustainable agricultural practices, combined with the demand for enhanced crop productivity, has led to a growing interest in utilizing microorganisms for biocontrol of diseases and pests, as well as for growth promotion. In Brazilian agriculture, the use of plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) has become increasingly prevalent, with a corresponding rise in the number of registered microbial inoculants each year. PGPR and PGPF occupy diverse niches within the rhizosphere, playing a crucial role in soil nutrient cycling and influencing a wide range of plant physiological processes. This review examines the primary mechanisms employed by these microbial agents to promote growth, as well as the strategy of co-inoculation to enhance product efficacy. Furthermore, we provide a comprehensive analysis of the microbial inoculants currently available in Brazil, detailing the microorganisms accessible for major crops, and discuss the market's prospects for the research and development of novel products in light of current challenges faced in the coming years.
Collapse
Affiliation(s)
- Matheus F. L. Andreata
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leandro Afonso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Erika T. G. Niekawa
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Julio M. Salomão
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Clara D. Silva
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Stefani F. Alarcon
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Eugenia A. Parra
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kathlen Giovana Grzegorczyk
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| |
Collapse
|
12
|
Alzate Zuluaga MY, Fattorini R, Cesco S, Pii Y. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front Microbiol 2024; 15:1440978. [PMID: 39176279 PMCID: PMC11338843 DOI: 10.3389/fmicb.2024.1440978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named SynComs), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.
Collapse
|
13
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
14
|
Zhao Y, Liang H, Zhang J, Chen Y, Dhital YP, Zhao T, Wang Z. Isolation and Characterization of Potassium-Solubilizing Rhizobacteria (KSR) Promoting Cotton Growth in Saline-Sodic Regions. Microorganisms 2024; 12:1474. [PMID: 39065241 PMCID: PMC11279176 DOI: 10.3390/microorganisms12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cotton is highly sensitive to potassium, and Xinjiang, China's leading cotton-producing region, faces a severe challenge due to reduced soil potassium availability. Biofertilizers, particularly potassium-solubilizing rhizobacteria (KSR), convert insoluble potassium into plant-usable forms, offering a sustainable solution for evergreen agriculture. This study isolated and characterized KSR from cotton, elucidated their potassium solubilization mechanisms, and evaluated the effects of inoculating KSR strains on cotton seedlings. Twenty-three KSR strains were isolated from cotton rhizosphere soil using modified Aleksandrov medium. Their solubilizing capacities were assessed in a liquid medium. Strain A10 exhibited the highest potassium solubilization capacity (21.8 ppm) by secreting organic acids such as lactic, citric, acetic, and succinic acid, lowering the pH and facilitating potassium release. A growth curve analysis and potassium solubilization tests of A10 under alkali stress showed its vigorous growth and maintained solubilization ability at pH 8-9, with significant inhibition at pH 10. Furthermore, 16S rRNA sequencing identified strain A10 as Pseudomonas aeruginosa. Greenhouse pot experiments showed that inoculating cotton plants with strain A10 significantly increased plant height and promoted root growth. This inoculation also enhanced dry biomass accumulation in both the aerial parts and root systems of the plants, while reducing the root-shoot ratio. These results suggest that Pseudomonas aeruginosa A10 has potential as a biofertilizer, offering a new strategy for sustainable agriculture.
Collapse
Affiliation(s)
- Yue Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Hongbang Liang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Jihong Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yu Chen
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yam Prasad Dhital
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Tao Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Zhenhua Wang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| |
Collapse
|
15
|
Xie X, Gan L, Wang C, He T. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch Microbiol 2024; 206:341. [PMID: 38967784 DOI: 10.1007/s00203-024-04071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.
Collapse
Affiliation(s)
- Xue Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Chengyang Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
16
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
17
|
Das Mohapatra M, Sahoo RK, Tuteja N. Phosphate solubilizing bacteria, Pseudomonas aeruginosa, improve the growth and yield of groundnut ( Arachis hypogaea L .). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1099-1111. [PMID: 39100873 PMCID: PMC11291777 DOI: 10.1007/s12298-024-01478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024]
Abstract
For agricultural safety and sustainability, instead of synthetic fertilizers the eco-friendly and inexpensive biological applications include members of plant-growth-promoting rhizobacteria (PGPR) genera, Pseudomonas spp. will be an excellent alternative option to bioinoculants as they do not threaten the soil biota. The effect of phosphate solubilizing bacteria (PSB) Pseudomonas aeruginosa (MK 764942.1) on groundnuts' growth and yield parameters was studied under field conditions. The strain was combined with a single super phosphate and tested in different combinations for yield improvement. Integration of bacterial strain with P fertilizer gave significantly higher pod yield ranging from 7.36 to 13.18% compared to plots where sole inorganic fertilizers were applied. Similarly, the combined application of PSB and inorganic P fertilizer significantly influenced plant height and number of branches compared to sole. However, a higher influence of phosphorous application (both PSB and P fertilizer) observed both nodule dry weight and number of nodules. Combined with single super phosphate (100% P) topped in providing better yield attributing characters (pod yield, haulm yield, biomass yield, 1000 kernel weight, and shelling percentage) in groundnut. Higher oil content was also recorded with plants treated with Pseudomonas aeruginosa combined with single super phosphate (SSP) (100% P). Nutrients like nitrogen (N), phosphorous (P), and potassium (K) concentrations were positively influenced in shoot and kernel by combined application. In contrast, Ca, Mg, and S were found to be least influenced by variations of Phosphorous. Plants treated with Pseudomonas aeruginosa and lower doses of SSP (75% P) recorded higher shoot and kernel P. We found that co-inoculation with PSB and SSP could be an auspicious substitute for utilizing P fertilizer in enhancing yield and protecting nutrient concentrations in groundnut cultivation. Therefore, PSB can be a good substitute for bio-fertilizers to promote agricultural sustainability.
Collapse
Affiliation(s)
- Monalisha Das Mohapatra
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050 India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
18
|
Chen P, Li Z, Cao N, Wu RX, Kuang ZR, Yu F. Comparison of Bacterial Communities in Five Ectomycorrhizal Fungi Mycosphere Soil. Microorganisms 2024; 12:1329. [PMID: 39065098 PMCID: PMC11279354 DOI: 10.3390/microorganisms12071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Ectomycorrhizal fungi have huge potential value, both nutritionally and economically, but most of them cannot be cultivated artificially. To better understand the influence of abiotic and biotic factors upon the growth of ectomycorrhizal fungi, mycosphere soil and bulk soil of five ectomycorrhizal fungi (Calvatia candida, Russula brevipes, Leucopaxillus laterarius, Leucopaxillus giganteus, and Lepista panaeola) were used as research objects for this study. Illumina MiSeq sequencing technology was used to analyze the community structure of the mycosphere and bulk soil bacteria of the five ectomycorrhizal fungi, and a comprehensive analysis was conducted based on soil physicochemical properties. Our results show that the mycosphere soil bacteria of the five ectomycorrhizal fungi are slightly different. Escherichia, Usitatibacter, and Bradyrhizobium are potential mycorrhizal-helper bacteria of distinct ectomycorrhizal fungi. Soil water content, soil pH, and available potassium are the main factors shaping the soil bacterial community of the studied ectomycorrhizal fungi. Moreover, from the KEGG functional prediction and LEfSe analysis, there are significant functional differences not only between the mycosphere soil and bulk soil. 'Biosynthesis of terpenoidsand steroids', 'alpha-Linolenic acid metabolism', 'Longevity regulating pathway-multiple species', 'D-Arginine and D-ornithine metabolism', 'Nitrotoluene degradation' and other functions were significantly different in mycosphere soil. These findings have pivotal implications for the sustainable utilization of ectomycorrhizal fungi, the expansion of edible fungus cultivation in forest environments, and the enhancement of derived economic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Yu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China; (P.C.); (Z.L.); (N.C.); (R.-X.W.); (Z.-R.K.)
| |
Collapse
|
19
|
Yang K, Li S, Sun Y, Cartmill AD, López IF, Ma C, Zhang Q. Effects of combined nitrogen and phosphorus application on soil phosphorus fractions in alfalfa ( Medicago sativa L.) production in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1380738. [PMID: 38863550 PMCID: PMC11165086 DOI: 10.3389/fpls.2024.1380738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Nitrogen (N) and phosphorus (P) fertilizers change the morphological structure and effectiveness of P in the soil, which in turn affects crop growth, yield, and quality. However, the effects and mechanism of combined N and P application on the content of P fractions and the transformation of effective forms in alfalfa (Medicago sativa L.) production is unclear. This experiment was conducted with four levels of N: 0 (N0), 60 (N1), 120 (N2) and 180 kg·ha-1 (N3); and two levels of P (P2O5): 0 (P0) and 100 kg·ha-1 (P1). The results indicated that, under the same N level, P application significantly increased soil total N, and total P, available P, and content of various forms of inorganic P when compared to no P application, while decreasing the content of various forms of organic P and pH value. In general, under P0 conditions, soil total N content tended to increase with increasing N application, while total P, available P content, pH, inorganic P content in all forms, and organic P content in all forms showed a decreasing trend. When compared to no N application, insoluble P (Fe-P, O-P, Ca10-P) of the N application treatments was reduced 2.80 - 22.72, 2.96 - 20.42, and 5.54 - 20.11%, respectively. Under P1 conditions, soil total N and O-P tended to increase with increasing N application, while, pH, Ca2-P, Al-P, Fe-P, Ca10-P, and organic P content of each form tended to decrease. Total P, available P, and labile organic P (LOP) of N application reduced 0.34 - 8.58, 4.76 - 19.38, and 6.27 - 14.93%, respectively, when compared to no application. Nitrogen fertilization reduced the soil Ca2-P ratio, while P fertilization reduced soil Fe-P, moderately resistant organic P (MROP), and highly resistant P (HROP) ratios, and combined N and P elevated the Ca8-P to LOP ratio. The results of redundancy analysis showed that soil total N content, available P content, and pH were the key factors affecting the conversion of P fractions in the soil. Nitrogen and P reduced the proportion of soil insoluble P, promoted the activation of soil organic P, resulting in accumulation of slow-acting P in the soil, thereby improving the efficiency of soil P in alfalfa production.
Collapse
Affiliation(s)
- Kaixin Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Shengyi Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanliang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Andrew D. Cartmill
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Ignacio F. López
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chunhui Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qianbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
20
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
21
|
Bianco C. Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2024; 13:1323. [PMID: 38794394 PMCID: PMC11125013 DOI: 10.3390/plants13101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Global food-production levels may soon be insufficient for feeding the population, and changing climatic conditions could further limit agri-food production [...].
Collapse
Affiliation(s)
- Carmen Bianco
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
| |
Collapse
|
22
|
Jing T, Li J, He Y, Shankar A, Saxena A, Tiwari A, Maturi KC, Solanki MK, Singh V, Eissa MA, Ding Z, Xie J, Awasthi MK. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108602. [PMID: 38608506 DOI: 10.1016/j.plaphy.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.
Collapse
Affiliation(s)
- Tao Jing
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jingyang Li
- Tropical Crops Genetic and Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yingdui He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Mamdouh A Eissa
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Zheli Ding
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
23
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Faller L, Leite MFA, Kuramae EE. Enhancing phosphate-solubilising microbial communities through artificial selection. Nat Commun 2024; 15:1649. [PMID: 38388537 PMCID: PMC10884399 DOI: 10.1038/s41467-024-46060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Microbial communities, acting as key drivers of ecosystem processes, harbour immense potential for sustainable agriculture practices. Phosphate-solubilising microorganisms, for example, can partially replace conventional phosphate fertilisers, which rely on finite resources. However, understanding the mechanisms and engineering efficient communities poses a significant challenge. In this study, we employ two artificial selection methods, environmental perturbation, and propagation, to construct phosphate-solubilising microbial communities. To assess trait transferability, we investigate the community performance in different media and a hydroponic system with Chrysanthemum indicum. Our findings reveal a distinct subset of phosphate-solubilising bacteria primarily dominated by Klebsiella and Enterobacterales. The propagated communities consistently demonstrate elevated levels of phosphate solubilisation, surpassing the starting soil community by 24.2% in activity. The increased activity of propagated communities remains consistent upon introduction into the hydroponic system. This study shows the efficacy of community-level artificial selection, particularly through propagation, as a tool for successfully modifying microbial communities to enhance phosphate solubilisation.
Collapse
Affiliation(s)
- Lena Faller
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Utrecht University, Institute of Environmental Biology, Ecology and Biodiversity, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marcio F A Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Utrecht University, Institute of Environmental Biology, Ecology and Biodiversity, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Utrecht University, Institute of Environmental Biology, Ecology and Biodiversity, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
26
|
Ghoreshizadeh S, Calvo-Peña C, Ruiz-Muñoz M, Otero-Suárez R, Coque JJR, Cobos R. Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6 Isolated from the Hop Rhizosphere Increase Phosphate Assimilation by the Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:402. [PMID: 38337935 PMCID: PMC10857139 DOI: 10.3390/plants13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Most of the phosphorus incorporated into agricultural soils through the use of fertilizers precipitates in the form of insoluble salts that are incapable of being used by plants. This insoluble phosphorus present in large quantities in soil forms the well-known "phosphorus legacy". The solubilization of this "phosphorus legacy" has become a goal of great agronomic importance, and the use of phosphate-solubilizing bacteria would be a useful tool for this purpose. In this work, we have isolated and characterized phosphate-solubilizing bacteria from the rhizosphere of hop plants. Two particular strains, Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6, were selected as plant growth-promoting rhizobacteria due to their high phosphate solubilization capability in both plate and liquid culture assays and other interesting traits, including auxin and siderophore production, phytate degradation, and acidic and alkaline phosphatase production. These strains were able to significantly increase phosphate uptake and accumulation of phosphorus in the aerial part (stems, petioles, and leaves) of hop plants, as determined by greenhouse trials. These strains are promising candidates to produce biofertilizers specifically to increase phosphate adsorption by hop plants.
Collapse
Affiliation(s)
| | | | | | | | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (S.G.); (C.C.-P.); (M.R.-M.); (R.O.-S.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (S.G.); (C.C.-P.); (M.R.-M.); (R.O.-S.)
| |
Collapse
|
27
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
28
|
Yang S, Ning Y, Li H, Zhu Y. Effects of Priestia aryabhattai on Phosphorus Fraction and Implications for Ecoremediating Cd-Contaminated Farmland with Plant-Microbe Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:268. [PMID: 38256821 PMCID: PMC10818761 DOI: 10.3390/plants13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The application of phosphate-solubilizing bacteria has been widely studied in remediating Cd-contaminated soil, but only a few studies have reported on the interaction of P and Cd as well as the microbiological mechanisms with phosphate-solubilizing bacteria in the soil because the activity of phosphate-solubilizing bacteria is easily inhibited by the toxicity of Cd. This paper investigates the phosphorus solubilization ability of Priestia aryabhattai domesticated under the stress of Cd, which was conducted in a soil experiment with the addition of Cd at different concentrations. The results show that the content of Ca2-P increased by 5.12-19.84%, and the content of labile organic phosphorus (LOP) increased by 3.03-8.42% after the addition of Priestia aryabhattai to the unsterilized soil. The content of available Cd decreased by 3.82% in the soil with heavy Cd contamination. Priestia aryabhattai has a certain resistance to Cd, and its relative abundance increased with the increased Cd concentration. The contents of Ca2-P and LOP in the soil had a strong positive correlation with the content of Olsen-P (p < 0.01), while the content of available Cd was negatively correlated with the contents of Olsen-P, Ca2-P, and LOP (p < 0.05). Priestia aryabhattai inhibits the transport of Cd, facilitates the conversion of low-activity P and insoluble P to Ca2-P and LOP in the soil, and increases the bioavailability and seasonal utilization of P in the soil, showing great potential in ecoremediating Cd-contaminated farmland soil with plant-microbe-combined technology.
Collapse
Affiliation(s)
- Shenghan Yang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030031, China;
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
| | - Yiru Ning
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030031, China
| | - Hua Li
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| | - Yuen Zhu
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| |
Collapse
|
29
|
Feng Y, He J, Zhang H, Jia X, Hu Y, Ye J, Gu X, Zhang X, Chen H. Phosphate solubilizing microorganisms: a sustainability strategy to improve urban ecosystems. Front Microbiol 2024; 14:1320853. [PMID: 38249462 PMCID: PMC10797123 DOI: 10.3389/fmicb.2023.1320853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Intensification of urban construction has gradually destroyed human habitat ecosystems. Plants, which serve as the foundation of ecosystems, require green, low-cost, and effective technologies to sustain their growth in stressful environments. A total of 286 keywords and 10 clusters from the bibliometric analysis of 529 articles (1999-2023) indicate the increasing importance of research on microbial functionality in landscape ecosystems. Phosphate solubilizing microorganisms (PSMs) also improve plant disease resistance, adaptability, and survival. PSMs are widely used to promote plant growth and improve ecological quality. They can increase the availability of phosphorus in the soil and reduce the dependence of plants on chemical fertilizers. Microorganisms regulate phosphorus as key tools in landscape ecosystems. Most importantly, in urban and rural landscape practices, PSMs can be applied to green spaces, residential landscapes, road greening, and nursery planting, which play significant roles in improving vegetation coverage, enhancing plant resistance, improving environmental quality, and mitigating the heat island effect. PSMs are also helpful in restoring the ecological environment and biodiversity of polluted areas, such as brownfields, to provide residents with a more liveable living environment. Therefore, the multiple efficacies of PSM are expected to play increasingly important roles in the construction of urban and rural landscape ecosystems.
Collapse
Affiliation(s)
- Yang Feng
- School of Art and Design, Xijing University, Xi'an, China
- Shaanxi Provincial Research Center of Public Scientific Quality Development and Cultural and Creative Industry Development, Xi'an, China
| | - Jing He
- School of Art and Design, Xijing University, Xi'an, China
| | - Hongchen Zhang
- School of Art and Design, Xijing University, Xi'an, China
| | - Xiaolin Jia
- School of Art and Design, Xijing University, Xi'an, China
- Shaanxi Provincial Research Center of Public Scientific Quality Development and Cultural and Creative Industry Development, Xi'an, China
| | - Youning Hu
- School of Biological and Environmental Engineering, Xi’an University, Xi'an, China
| | - Jianqing Ye
- School of Art and Design, Xijing University, Xi'an, China
| | - Xinyuan Gu
- School of Art and Design, Xijing University, Xi'an, China
| | - Xinping Zhang
- School of Art and Design, Xi’an University of Technology, Xi'an, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
30
|
Li XZ, Zhang XT, Bie XM, Zhang J, Jiang DJ, Tang H, Wang F. Transcriptome analysis of axillary buds in low phosphorus stress and functional analysis of TaWRKY74s in wheat. BMC PLANT BIOLOGY 2024; 24:1. [PMID: 38163871 PMCID: PMC10759677 DOI: 10.1186/s12870-023-04695-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Wheat is one of the main grain crops in the world, and the tiller number is a key factor affecting the yield of wheat. Phosphorus is an essential element for tiller development in wheat. However, due to decreasing phosphorus content in soil, there has been increasing use of phosphorus fertilizer, while imposing risk of soil and water pollution. Hence, it is important to identify low phosphorus tolerance genes and utilize them for stress resistance breeding in wheat. RESULTS We subjected the wheat variety Kenong 199 (KN199) to low phosphorus stress and observed a reduced tiller number. Using transcriptome analysis, we identified 1651 upregulated genes and 827 downregulated of genes after low phosphorus stress. The differentially expressed genes were found to be enriched in the enzyme activity regulation related to phosphorus, hormone signal transduction, and ion transmembrane transport. Furthermore, the transcription factor analysis revealed that TaWRKY74s were important for low phosphorus tolerance. TaWRKY74s have three alleles: TaWRKY74-A, TaWRKY74-B, and TaWRKY74-D, and they all belong to the WRKY family with conserved WRKYGQK motifs. These proteins were found to be located in the nucleus, and they were expressed in axillary meristem, shoot apical meristem(SAM), young leaves, leaf primordium, and spikelet primordium. The evolutionary tree showed that TaWRKY74s were closely related to OsWRKY74s in rice. Moreover, TaWRKY74s-RNAi transgenic plants displayed significantly fewer tillers compared to wild-type plants under normal conditions. Additionally, the tiller numebr of the RNAi transgenic plants was also significantly lower than that of the wild-type plants under low-phosphorus stress, and increased the decrease amplitude. This suggestd that TaWRKY74s are related to phosphorus response and can affect the tiller number of wheat. CONCLUSIONS The results of this research showed that TaWRKY74s were key genes in wheat response to low phosphorus stress, which might regulate wheat tiller number through abscisic acid (ABA) and auxin signal transduction pathways. This research lays the foundation for further investigating the mechanism of TaWRKY74s in the low phosphorus environments and is significant for wheat stress resistance breeding.
Collapse
Affiliation(s)
- Xue-Zheng Li
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Tong Zhang
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Min Bie
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jing Zhang
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Deng-Ji Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou, 510000, China
| | - Heng Tang
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China.
- College of Agriculture, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Fang Wang
- National Key Laboratory of Wheat Breeding, Shandong Agricultural University, Taian, Shandong, 271018, China.
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
31
|
Li XL, Lv XY, Ji JB, Wang WD, Wang J, Wang C, He HB, Ben AL, Liu TL. Complete genome sequence of Nguyenibacter sp. L1, a phosphate solubilizing bacterium isolated from Lespedeza bicolor rhizosphere. Front Microbiol 2023; 14:1257442. [PMID: 38152372 PMCID: PMC10752598 DOI: 10.3389/fmicb.2023.1257442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Phosphorus (P) deficiency is a predominant constraint on plant growth in acidified soils, largely due to the sequestration of P by toxic aluminum (Al) compounds. Indigenous phosphorus-solubilizing bacteria (PSBs) capable of mobilizing Al-P in these soils hold significant promise. A novel Al-P-solubilizing strain, Al-P Nguyenibacter sp. L1, was isolated from the rhizosphere soil of healthy Lespedeza bicolor plants indigenous to acidic terrains. However, our understanding of the genomic landscape of bacterial species within the genus Nguyenibacter remains in its infancy. To further explore its biotechnological potentialities, we sequenced the complete genome of this strain, employing an amalgamation of Oxford Nanopore ONT and Illumina sequencing platforms. The resultant genomic sequence of Nguyenibacter sp. L1 manifests as a singular, circular chromosome encompassing 4,294,433 nucleotides and displaying a GC content of 66.73%. The genome was found to host 3,820 protein-coding sequences, 12 rRNAs, and 55 tRNAs. Intriguingly, annotations derived from the eggNOG and KEGG databases indicate the presence of genes affiliated with phosphorus solubilization and nitrogen fixation, including iscU, glnA, and gltB/D associated with nitrogen fixation, and pqqBC associated with inorganic phosphate dissolution. Several bioactive secondary metabolite genes in the genome, including pqqCDE, phytoene synthase and squalene synthase predicted by antiSMASH. Moreover, we uncovered a complete metabolic pathway for ammonia, suggesting an ammonia-affinity property inherent to Nguyenibacter sp. L1. This study verifies the nitrogen-fixing and phosphate-dissolving abilities of Nguyenibacter sp. L1 at the molecular level through genetic screening and analysis. The insights gleaned from this study offer strategic guidance for future strain enhancement and establish a strong foundation for the potential incorporation of this bacterium into agricultural practices.
Collapse
Affiliation(s)
- Xiao Li Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Xin Yang Lv
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jun Bin Ji
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Wei Duo Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Ji Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Cong Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Hai Bin He
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ai Ling Ben
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Ting Li Liu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
32
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
33
|
Wippel K. Plant and microbial features governing an endophytic lifestyle. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102483. [PMID: 37939457 DOI: 10.1016/j.pbi.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Beneficial microorganisms colonizing internal plant tissues, the endophytes, support their host through plant growth promotion, pathogen protection, and abiotic stress alleviation. Their efficient application in agriculture requires the understanding of the molecular mechanisms and environmental conditions that facilitate in planta accommodation. Accumulating evidence reveals that commensal microorganisms employ similar colonization strategies as their pathogenic counterparts. Fine-tuning of immune response, motility, and metabolic crosstalk accounts for their differentiation. For a holistic perspective, in planta experiments with microbial collections and comprehensive genome data exploration are crucial. This review describes the most recent findings on factors involved in endophytic colonization processes, focusing on bacteria and fungi, and discusses required methodological approaches to unravel their relevance within a community context.
Collapse
Affiliation(s)
- Kathrin Wippel
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Pan L, Cai B. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms 2023; 11:2904. [PMID: 38138048 PMCID: PMC10745930 DOI: 10.3390/microorganisms11122904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Phosphorus is an essential nutrient for all life on earth and has a major impact on plant growth and crop yield. The forms of phosphorus that can be directly absorbed and utilized by plants are mainly HPO42- and H2PO4-, which are known as usable phosphorus. At present, the total phosphorus content of soils worldwide is 400-1000 mg/kg, of which only 1.00-2.50% is plant-available, which seriously affects the growth of plants and the development of agriculture, resulting in a high level of total phosphorus in soils and a scarcity of available phosphorus. Traditional methods of applying phosphorus fertilizer cannot address phosphorus deficiency problems; they harm the environment and the ore material is a nonrenewable natural resource. Therefore, it is imperative to find alternative environmentally compatible and economically viable strategies to address phosphorus scarcity. Phosphorus-solubilizing bacteria (PSB) can convert insoluble phosphorus in the soil into usable phosphorus that can be directly absorbed by plants, thus improving the uptake and utilization of phosphorus by plants. However, there is no clear and systematic report on the mechanism of action of PSB. Therefore, this paper summarizes the discovery process, species, and distribution of PSB, focusing on the physiological mechanisms outlining the processes of acidolysis, enzymolysis, chelation and complexation reactions of PSB. The related genes regulating PSB acidolysis and enzymatic action as well as genes related to phosphate transport and the molecular direction mechanism of its pathway are examined. The effects of PSB on the structure and abundance of microbial communities in soil are also described, illustrating the mechanism of how PSB interact with microorganisms in soil and indirectly increase the amount of available phosphorus in soil. And three perspectives are considered in further exploring the PSB mechanism in utilizing a synergistic multi-omics approach, exploring PSB-related regulatory genes in different phosphorus levels and investigating the application of PSB as a microbial fungicide. This paper aims to provide theoretical support for improving the utilization of soil insoluble phosphorus and providing optimal management of elemental phosphorus in the future.
Collapse
Affiliation(s)
- Lin Pan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| |
Collapse
|
35
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
36
|
Cheng Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166468. [PMID: 37619729 DOI: 10.1016/j.scitotenv.2023.166468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phosphorus (P) is a limiting nutrient in the soil-plant nutrient cycling. Although the exogenous application of chemical P fertilizers can satisfy crop P requirements during critical growth phases. While excessive P fertilizers use results in low phosphorus acquisition efficiency (PAE), it has serious environmental consequences and hastens the depletion of P mineral reserves. Phosphate-solubilizing bacteria (PSB) have the potential to make insoluble phosphate available to plants through solubilization and mineralization, increasing crop yields while maintaining environmental sustainability. Existing reviews mainly focus on the beneficial effects of PSB on crop performance and related mechanisms, while few of them elucidate the action mechanisms of PSB in soil-microbe-plant interactions for crop cultivation with high yield efficiency. Hence, this study provides a comprehensive review of the physicochemical and molecular mechanisms (e.g., root exudates, extracellular polysaccharides, organic acids, phosphatases, and phosphate-specific transport systems) of PSB to facilitate the P cycle in the soil-plant systems. Further, the potential of commercial applications of PSB (e.g., genetic engineering, seed priming and coating) are also discussed in order to highlight their contribution to sustainable agriculture. Finally, existing challenges and future prospects in agricultural applications are proposed. In conclusion, we firmly believe that PSB represent a highly significant biotechnological tool for enhancing agricultural productivity and offers a wide range of extensive potential applications.
Collapse
Affiliation(s)
- Yingying Cheng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
37
|
Villamarin-Raad D, Lozano-Puentes HS, Chitiva LC, Costa GM, Díaz-Gallo SA, Díaz-Ariza LA. Changes in Phenolic Profile and Total Phenol and Total Flavonoid Contents of Guadua angustifolia Kunth Plants under Organic and Conventional Fertilization. ACS OMEGA 2023; 8:41223-41231. [PMID: 37970062 PMCID: PMC10634197 DOI: 10.1021/acsomega.3c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Agronomic management of a crop, including the application of fertilizers and biological inoculants, affects the phenol and flavonoid contents of plants producing these metabolites. Guadua angustifolia Kunth, a woody bamboo widely distributed in the Americas, produces several biologically active phenolic compounds. The aim of this study was to evaluate the effect of chemical and organic fertilizers together with the application of biological inoculants on the composition of phenolic compounds in G. angustifolia plants at the nursery stage. In 8-month-old plants, differences were observed in plant biomass (20.27 ± 7.68 g) and in the content of total phenols and flavonoids (21.89 ± 9.64 mg gallic acid equivalents/plant and 2.13 ± 0.98 mg quercetin equivalents/plant, respectively) when using the chemical fertilizer diammonium phosphate (DAP). No significant differences were found owing to the effect of the inoculants, although the plants with the application of Stenotrophomonas sp. on plants fertilized with DAP presented higher values of the metabolites (24.12 ± 6.72 mg gallic acid equivalents/plant and 2.39 ± 0.77 mg quercetin equivalents/plant). The chromatographic profile of phenolic metabolites is dominated by one glycosylated flavonoid, the concentration of which was favored by the application of the inoculants Azospirillum brasilense, Pseudomonas fluorescens, and Stenotrophomonas sp. In the case study, the combined use of DAP and bacterial inoculants is recommended for the production of G. angustifolia plant material with a high content of promising biologically active flavonoids or phenolics.
Collapse
Affiliation(s)
- David
A. Villamarin-Raad
- Laboratorio
Asociaciones Suelo Planta Microorganismo (LAMIC), Pontificia Universidad Javeriana Sede, Bogotá 110231, Colombia
| | - Hair S. Lozano-Puentes
- Laboratorio
Asociaciones Suelo Planta Microorganismo (LAMIC), Pontificia Universidad Javeriana Sede, Bogotá 110231, Colombia
| | - Luis Carlos Chitiva
- Grupo
de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana Sede, Bogotá 110221, Colombia
| | - Geison M. Costa
- Grupo
de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana Sede, Bogotá 110221, Colombia
| | - Sergio A. Díaz-Gallo
- Laboratorio
Asociaciones Suelo Planta Microorganismo (LAMIC), Pontificia Universidad Javeriana Sede, Bogotá 110231, Colombia
| | - Lucía A. Díaz-Ariza
- Laboratorio
Asociaciones Suelo Planta Microorganismo (LAMIC), Pontificia Universidad Javeriana Sede, Bogotá 110231, Colombia
| |
Collapse
|
38
|
Sunitha kumari K, Devi SP, Ranjithkumar R, Djearamane S, Tey LH, Wong LS, Kayarohanam S, Arumugam N, Almansour AI, Perumal K. Organic Remobilization of zinc and phosphorus availability to plants by application of mineral solubilizing bacteria Pseudomonas aeruginosa. Heliyon 2023; 9:e22128. [PMID: 38053868 PMCID: PMC10694168 DOI: 10.1016/j.heliyon.2023.e22128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Incessant utilization of chemical fertilizers leads to the accumulation of minerals in the soil, rendering them unavailable to plants. Unaware of the mineral reserves present in the soil, farming communities employ chemical fertilizers once during each cultivation, a practice that causes elevated levels of insoluble minerals within the soil. The use of biofertilizers on the other hand, reduces the impact of chemical fertilizers through the action of microorganisms in the product, which dissolves minerals and makes them readily available for plant uptake, helping to create a sustainable environment for continuous agricultural production. In the current investigation, a field trial employing Arachis hypogaea L was conducted to evaluate the ability of Pseudomonas aeruginosa to enhance plant growth and development by solubilizing minerals present in the soil (such as zinc and phosphorus). A Randomized Complete Block Design (RCBD) included five different treatments as T1: Un inoculated Control; T2: Seeds treated with a liquid formulation of P. aeruginosa; T3: Seeds treated with a liquid formulation of P. aeruginosa and the soil amended with organic manure (farmyard); T4: Soil amended with organic manure (farmyard) alone; T5: Seeds treated with lignite (solid) based formulation of P. aeruginosa were used for the study. Efficacy was determined based on the plant's morphological characters and mineral contents (Zn and P) of plants and soil. Survival of P. aeruginosa in the field was validated using Antibiotic Intrinsic patterns (AIP). The results indicated that the combination treatment of P. aeruginosa liquid formulation and organic fertilizer (farmyard) (T3) produced the highest biometric parameters and mineral (Zn and P) content of the groundnut plants and the soil. This outcome is likely attributed to the mineral solubilizing capability of P. aeruginosa. Furthermore, the presence of farmyard manure increased the metabolic activity of P. aeruginosa by inducing its heterotrophic activity, leading to higher mineral content in T3 soil compared to other soil treatments. The AIP data confirmed the presence of the applied liquid inoculant by exhibiting a similar intrinsic pattern between the in vitro isolate and the isolate obtained from the fields. In summary, the Zn and P solubilization ability of P. aeruginosa facilitates the conversion of soil-unavailable mineral form into a form accessible to plants. It further proposes the utilization of the liquid formulation of P. aeruginosa as a viable solution to mitigate the challenges linked to solid-based biofertilizers and the reliance on mineral-based chemical fertilizers.
Collapse
Affiliation(s)
- K. Sunitha kumari
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore-641 004, Tamil Nadu, India
| | - S.N. Padma Devi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore-641 004, Tamil Nadu, India
| | | | - Sinouvassane Djearamane
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, India
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Lai-Hock Tey
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800 Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, Geomatika University Malaysia, Kuala Lumpur 54200, Malaysia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Janati W, Mikou K, El Ghadraoui L, Errachidi F. Growth stimulation of two legumes ( Vicia faba and Pisum sativum) using phosphate-solubilizing bacteria inoculation. Front Microbiol 2023; 14:1212702. [PMID: 37645230 PMCID: PMC10461066 DOI: 10.3389/fmicb.2023.1212702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The application of chemical fertilizers for plant growth and protection is one of the reasons for the environment and ecosystem destruction, thus, sustainable agriculture is gaining popularity in research and among farming communities. Although most soils are high in total phosphorus (P), a large portion is unavailable to plants and regarded as a growth-limiting factor. P-solubilizing bacteria (PSB) exploitation is a newly developed bio-solution for enhancing rhizosphere P availability; however, the effect of these bacteria on soil quality and the different phases of plant growth remains unknown. This study aims to evaluate the impact of five strains of PSB, isolated from legume rhizosphere, on the growth of two plants (Vicia faba and Pisum sativum) and certain soil properties. The efficient strains of PSB used are characterized by the P-solubilization, the ACC deaminase activity, the fixation of N, and the IAA, HCN, and siderophores production. The activity of these bacteria is tested in vitro and in vivo under controlled conditions on the growth of the two plants supplemented with the rock P (RP). According to our findings, all PSBs strains outperformed the control in terms of enhancing the growth of the tested legumes with a percentage ranging from 77.78 to 88.88%, respectively. The results showed that all treatments significantly improved plant parameters like nitrogen- (N) and P-content in the plants (67.50, 23.11%), respectively. Also, an increase in the fresh and dry weights of above- (41.17, 38.57%) and below-ground biomasses (56.6, 42.28%), respectively. Compared to the control, this leads to an increase of 72% in root length, 40.91% in plant dry weight, and 40.07% in fresh weight. Rhizospheric soil in PSBs treatments displayed high levels of N, P, and organic matter. All treatments were found to have significantly higher levels of alkaline phosphatase, basal soil respiration, and β-glucosidase activity than the control. It is concluded that multi-traits PSB can be an alternative for utilizing chemical fertilizers to enhance soil quality and plant growth. Despite the potency of PSBs, its use as a source for the development of sustainable agriculture implies focusing on crop species and adaptation, stress tolerance and climate resilience.
Collapse
|
40
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gomez LA, Rogel MA, Ruíz-Valdiviezo VM, Rincón-Molina FA, Rincón-Rosales R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front Microbiol 2023; 14:1235930. [PMID: 37601341 PMCID: PMC10433389 DOI: 10.3389/fmicb.2023.1235930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. Methods This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. Results The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Discussion Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luis Alberto Manzano-Gomez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
41
|
Ma N, Yin D, Liu Y, Gao Z, Cao Y, Chen T, Huang Z, Jia Q, Wang D. Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Front Microbiol 2023; 14:1220431. [PMID: 37601353 PMCID: PMC10434241 DOI: 10.3389/fmicb.2023.1220431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.
Collapse
Affiliation(s)
- Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyi Huang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Song M, Wang X, Xu H, Zhou X, Mu C. Effect of Trichoderma viride on insoluble phosphorus absorption ability and growth of Melilotus officinalis. Sci Rep 2023; 13:12345. [PMID: 37524898 PMCID: PMC10390638 DOI: 10.1038/s41598-023-39501-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phosphorus (Pi) deficiency is a major factor of limiting plant growth. Using Phosphate-solubilizing microorganism (PSM) in synergy with plant root system which supply soluble Pi to plants is an environmentally friendly and efficient way to utilize Pi. Trichoderma viride (T. viride) is a biocontrol agent which able to solubilize soil nutrients, but little is known about its Pi solubilizing properties. The study used T. viride to inoculate Melilotus officinalis (M. officinalis) under different Pi levels and in order to investigate the effect on Pi absorption and growth of seedlings. The results found that T. viride could not only solubilizate insoluble inorganic Pi but also mineralize insoluble organic Pi. In addition, the ability of mineralization to insoluble organic Pi is more stronger. Under different Pi levels, inoculation of T. viride showed that promoted the growth of aboveground parts of seedlings and regulated the morphology of roots, thus increasing the dry weight of seedlings. The effect of T. viride on seedling growth was also reflected the increasing of chlorophyll fluorescence parameters and photosynthetic pigment content. Moreover, compared to the uninoculated treatments, inoculation of T. viride also enhanced Pi content in seedlings. Thus, the T. viride was a beneficial fungus for synergistic the plant Pi uptake and growth.
Collapse
Affiliation(s)
- Mingxia Song
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Tonghua Normal University, Tonghua, China
| | - Xinyu Wang
- Changchun Greening Management Center, Changchun, China
| | - Hongwei Xu
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaofu Zhou
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China.
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China.
| |
Collapse
|
43
|
Zuluaga MYA, de Oliveira ALM, Valentinuzzi F, Jayme NS, Monterisi S, Fattorini R, Cesco S, Pii Y. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: in situ study on cucumber. BMC Microbiol 2023; 23:184. [PMID: 37438698 DOI: 10.1186/s12866-023-02918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp. strain 15S and the exogenous application of its OAs on (i) the solubilization of tricalcium phosphate (TCP), (ii) plant growth and (iii) P nutrition of cucumber. To this purpose two independent experiments have been performed. RESULTS In the first experiment, carried out in vitro, the phosphate solubilizing activity of Enterobacter 15S was associated with the release of citric, fumaric, ketoglutaric, malic, and oxalic acids. In the second experiment, cucumber plants were grown in a Leonard jar system consisting of a nutrient solution supplemented with the OAs previously identified in Enterobacter 15S (jar's base) and a substrate supplemented with the insoluble TCP where cucumber plants were grown (jar's top). The use of Enterobacter 15S and its secreted OAs proved to be efficient in the in situ TCP solubilization. In particular, the enhancement of the morpho-physiological traits of P-starved cucumber plants was evident when treated with Enterobacter 15S, oxalate, or citrate. The highest accumulation of P in roots and shoots induced by such treatments further corroborated this hypothesis. CONCLUSION In our study, the results presented suggest that organic acids released by Enterobacter 15S as well as the bacterium itself can enhance the P-acquisition by cucumber plants.
Collapse
Affiliation(s)
- Mónica Yorlady Alzate Zuluaga
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy.
| | | | - Fabio Valentinuzzi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy
| | - Nádia Souza Jayme
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Paraná, Brazil
| | - Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy
| | - Roberto Fattorini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, Bolzano, 39100, Italy.
| |
Collapse
|
44
|
Hu X, Chen H. Phosphate solubilizing microorganism: a green measure to effectively control and regulate heavy metal pollution in agricultural soils. Front Microbiol 2023; 14:1193670. [PMID: 37434711 PMCID: PMC10330761 DOI: 10.3389/fmicb.2023.1193670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
|
45
|
Abbasi S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1074279. [PMID: 37360699 PMCID: PMC10290171 DOI: 10.3389/fpls.2023.1074279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) is one of the essential minerals for many biochemical and physiological responses in all biota, especially in plants. P deficiency negatively affects plant performance such as root growth and metabolism and plant yield. Mutualistic interactions with the rhizosphere microbiome can assist plants in accessing the available P in soil and its uptake. Here, we provide a comprehensive overview of plant-microbe interactions that facilitate P uptake by the plant. We focus on the role of soil biodiversity in improved P uptake by the plant, especially under drought conditions. P-dependent responses are regulated by phosphate starvation response (PSR). PSR not only modulates the plant responses to P deficiency in abiotic stresses but also activates valuable soil microbes which provide accessible P. The drought-tolerant P-solubilizing bacteria are appropriate for P mobilization, which would be an eco-friendly manner to promote plant growth and tolerance, especially in extreme environments. This review summarizes plant-microbe interactions that improve P uptake by the plant and brings important insights into the ways to improve P cycling in arid and semi-arid ecosystems.
Collapse
|
46
|
Suleimanova A, Bulmakova D, Sokolnikova L, Egorova E, Itkina D, Kuzminova O, Gizatullina A, Sharipova M. Phosphate Solubilization and Plant Growth Promotion by Pantoea brenneri Soil Isolates. Microorganisms 2023; 11:1136. [PMID: 37317110 DOI: 10.3390/microorganisms11051136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphate solubilizing microorganisms (PSMs) in soil have been shown to reduce mineral phosphate fertilizer supplementation and promote plant growth. Nevertheless, only several P-solubilizing microorganisms capable of solubilizing both organic and mineral sources of soil phosphorus have been identified up to now. The aim of this study was to evaluate the inorganic soil phosphate solubilizing activity of phytate-hydrolyzing Pantoea brenneri soil isolates. We showed that the strains efficiently solubilize a variety of inorganic phosphates. We optimized the media composition and culturing conditions to improve the solubilization efficiency of the strains and investigated the mechanisms of their phosphate solubilization. Through HPLC analysis, it was determined that P. brenneri produce oxalic, malic, formic, malonic, lactic, maleic, acetic, and citric acids as well as acid and alkaline phosphatases while growing on insoluble phosphate sources. Finally, we analyzed the influence of P. brenneri strains with multiple PGP-treats on plant growth in greenhouse experiments and showed their ability to promote growth of potato.
Collapse
Affiliation(s)
- Aliya Suleimanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Daria Bulmakova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Lidiya Sokolnikova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Evgenia Egorova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Daria Itkina
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Olga Kuzminova
- Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Lobachevskogo St. 2/31, 420111 Kazan, Russia
| | - Albina Gizatullina
- Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Lobachevskogo St. 2/31, 420111 Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| |
Collapse
|
47
|
Pallavi, Mishra RK, Sahu PK, Mishra V, Jamal H, Varma A, Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1122347. [PMID: 37152133 PMCID: PMC10158646 DOI: 10.3389/fpls.2023.1122347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 12/07/2023]
Abstract
Halotolerant plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms utilized to mitigate the biotic and abiotic stresses in plants. The areas of Sundarban mangroves of West Bengal, India have been reported to be rich in halotolerant microflora, yet major area remains unexplored. The present study, therefore, aims to map down the region-specific native microbial community potent of salt tolerance, plant growth promoting (PGP) activity and antagonistic activity against fungal pathogens. Bacterial samples were isolated from the saline soil of the Sundarban mangroves. A total of 156 bacterial samples were isolated and 20 were screened for their salt tolerance potential. These isolates were characterised using morphological, biochemical, and molecular approaches. Based on 16s rRNA sequencing, they were classified into 4 different genera, including Arthrobacter sp. (01 isolate), Pseudomonas plecoglossicida (01 isolate), Kocuria rosea (01 isolate), and Bacillus (17 isolates). The halotolerant isolates which possessed plant growth promoting traits including phosphate, and zinc solubilization, indole acetic acid production, siderophore, and ammonia generation were selected. Further, the effect of two halotolerant isolates GN-5 and JR-12 which showed most prominent PGP activities was evaluated in pea plant under high salinity conditions. The isolates improved survival by promoting germination (36 to 43%) and root-shoot growth and weight of pea plant in comparison to non-inoculated control plants. In a subsequent dual culture confrontation experiment, both these halo-tolerant isolates showed antagonistic activities against the aggressive root rot disease-causing Macrophomina phaseolina (Tassi) Goid NAIMCC-F-02902. The identified isolates could be used as potential bioagents for saline soils, with potential antagonistic effect on root rot disease. However, further studies at the physiological and molecular level would help to delineate a detail mechanistic understanding of broad-spectrum defence against salinity and potential biotic pathogen.
Collapse
Affiliation(s)
- Pallavi
- Amity Institute of Microbial Technology, Amity University, Noida, India
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pramod Kumar Sahu
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Vani Mishra
- Nanotechnology Application Centre, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Hafiza Jamal
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
48
|
Li HP, Han QQ, Liu QM, Gan YN, Rensing C, Rivera WL, Zhao Q, Zhang JL. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol Res 2023; 272:127375. [PMID: 37058784 DOI: 10.1016/j.micres.2023.127375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Phosphorus (P), an essential macronutrient for all life on Earth, has been shown to be a vital limiting nutrient element for plant growth and yield. P deficiency is a common phenomenon in terrestrial ecosystems across the world. Chemical phosphate fertilizer has traditionally been employed to solve the problem of P deficiency in agricultural production, but its application has been limited by the non-renewability of raw materials and the adverse influence on the ecological health of the environment. Therefore, it is imperative to develop efficient, economical, environmentally friendly and highly stable alternative strategies to meet the plant P demand. Phosphate-solubilizing bacteria (PSB) are able to improve plant productivity by increasing P nutrition. Pathways to fully and effectively use PSB to mobilize unavailable forms of soil P for plants has become a hot research topic in the fields of plant nutrition and ecology. Here, the biogeochemical P cycling in soil systems are summarized, how to make full use of soil legacy P via PSB to alleviate the global P resource shortage are reviewed. We highlight the advances in multi-omics technologies that are helpful for exploring the dynamics of nutrient turnover and the genetic potential of PSB-centered microbial communities. Furthermore, the multiple roles of PSB inoculants in sustainable agricultural practices are analyzed. Finally, we project that new ideas and techniques will be continuously infused into fundamental and applied research to achieve a more integrated understanding of the interactive mechanisms of PSB and rhizosphere microbiota/plant to maximize the efficacy of PSB as P activators.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Windell L Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, The Philippines
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
49
|
Zhang J, Han X, Su Y, Staehelin C, Xu C. T-DNA insertion mutagenesis in Penicillium brocae results in identification of an enolase gene mutant impaired in secretion of organic acids and phosphate solubilization. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37068121 DOI: 10.1099/mic.0.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Penicillium brocae strain P6 is a phosphate-solubilizing fungus isolated from farmland in Guangdong Province, China. To gain better insights into the phosphate solubilization mechanisms of strain P6, a T-DNA insertion population containing approximately 4500 transformants was generated by Agrobacterium tumefaciens-mediated transformation. The transformation procedure was optimized by using a Hybond N membrane for co-cultivation of A. tumefaciens and P. brocae. A mutant impaired in phosphate solubilization (named MT27) was obtained from the T-DNA insertion population. Thermal asymmetric interlaced PCR was then used to identify the nucleotide sequences flanking the T-DNA insertion site. The T-DNA in MT27 was inserted into the fourth exon of an enolase gene, which shows 90.8 % nucleotide identity with enolase mRNA from Aspergillus neoniger. Amino acid sequence homology analysis indicated that the enolase is well conserved among filamentous fungi and Saccharomyces cerevisiae. Complementation tests with the MT27 mutant confirmed that the enolase gene is involved in phosphate solubilization. Analysis of organic acids in culture supernatants indicated reduced levels of oxalic acid and lactic acid for the MT27 mutant compared to the parent strain P6 or the complementation strain. In conclusion, we suggest that the identified enolase gene of P. brocae is involved in production of specific organic acids, which, when secreted, act as phosphate solubilizing agents.
Collapse
Affiliation(s)
- Juntao Zhang
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| | - Xiaoge Han
- School of Ecological Environment Technology, Guangdong Industry Polytechnic, Nanhai Campus, Foshan 528225, PR China
| | - Yang Su
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Changchao Xu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| |
Collapse
|
50
|
Xavier GR, Jesus EDC, Dias A, Coelho MRR, Molina YC, Rumjanek NG. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. PLANTS (BASEL, SWITZERLAND) 2023; 12:954. [PMID: 36840302 PMCID: PMC9962295 DOI: 10.3390/plants12040954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.
Collapse
Affiliation(s)
| | | | - Anelise Dias
- Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, UFRRJ, Rodovia BR-465, Km 7, Seropédica 23890-000, RJ, Brazil
| | | | - Yulimar Castro Molina
- Programa de Pós-graduação em Microbiologia Agrícola, Universidade Federal de Lavras, UFLA, Trevo Rotatório Professor Edmir Sá Santos, Lavras 37203-202, MG, Brazil
| | | |
Collapse
|