1
|
Bueno da Silva M, Wiese-Klinkenberg A, Usadel B, Genzel F. Potato Berries as a Valuable Source of Compounds Potentially Applicable in Crop Protection and Pharmaceutical Sectors: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15449-15462. [PMID: 38970497 PMCID: PMC11261637 DOI: 10.1021/acs.jafc.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.
Collapse
Affiliation(s)
- Marília Bueno da Silva
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, CEPLAS, Institute for Biological
Data Science, Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| | - Franziska Genzel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Eggers EJ, Su Y, van der Poel E, Flipsen M, de Vries ME, Bachem CWB, Visser RGF, Lindhout P. Identification, Elucidation and Deployment of a Cytoplasmic Male Sterility System for Hybrid Potato. BIOLOGY 2024; 13:447. [PMID: 38927327 PMCID: PMC11200408 DOI: 10.3390/biology13060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Recent advances in diploid F1 hybrid potato breeding rely on the production of inbred lines using the S-locus inhibitor (Sli) gene. As a result of this method, female parent lines are self-fertile and require emasculation before hybrid seed production. The resulting F1 hybrids are self-fertile as well and produce many undesirable berries in the field. Utilization of cytoplasmic male sterility would eliminate the need for emasculation, resulting in more efficient hybrid seed production and male sterile F1 hybrids. We observed plants that completely lacked anthers in an F2 population derived from an interspecific cross between diploid S. tuberosum and S. microdontum. We studied the antherless trait to determine its suitability for use in hybrid potato breeding. We mapped the causal locus to the short arm of Chromosome 6, developed KASP markers for the antherless (al) locus and introduced it into lines with T and A cytoplasm. We found that antherless type male sterility is not expressed in T and A cytoplasm, proving that it is a form of CMS. We hybridized male sterile al/al plants with P cytoplasm with pollen from al/al plants with T and A cytoplasm and we show that the resulting hybrids set significantly fewer berries in the field. Here, we show that the antherless CMS system can be readily deployed in diploid F1 hybrid potato breeding to improve hybridization efficiency and reduce berry set in the field.
Collapse
Affiliation(s)
- Ernst-Jan Eggers
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
- Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ying Su
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
| | - Esmee van der Poel
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Martijn Flipsen
- Hogeschool Arnhem Nijmegen, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | | | - Christian W. B. Bachem
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
| |
Collapse
|
3
|
Faltus M, Domkářová J, Svoboda P, Horáčková V, Nesvadba V, Klička V, Ptáček J, Bilavcik A, Zamecnik J. Analysis of Thermal Characteristics of Potato and Hop Pollen for Their Cryopreservation and Cross-Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:1578. [PMID: 38891386 PMCID: PMC11174463 DOI: 10.3390/plants13111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the thermal properties of potato and hop pollen for cryopreservation and subsequent cross-breeding. Phase transitions and frozen water content in selected pollen samples were measured using a differential scanning calorimeter (DSC). Unlike hop pollen, potato pollen showed high variability in thermal properties and water content. Three specific types of pollen samples based on their thermal characteristics and water content were distinguished by DSC in potato: (1) 'glassy', with a water content lower than 0.21 g water per g dry matter; (2) 'transient', with a water content between 0.27 and 0.34 g of water per g of dry matter; (3) 'frozen', with a water content higher than 0.34 g of water per g of dry matter. Only the 'glassy' pollen samples with a low water content showed suitable properties for its long-term storage using cryopreservation in potato and hops. Cryopreservation of pollen did not significantly reduce its viability, and cryopreserved pollen was successfully used to produce both potato and hop hybrids. The results indicate that cryopreservation is a feasible technique for the preservation and utilization of pollen of these crops in the breeding process.
Collapse
Affiliation(s)
- Milos Faltus
- Crop Research Institute, Drnovská 507, CZ161 06 Prague, Czech Republic; (A.B.); (J.Z.)
| | - Jaroslava Domkářová
- Potato Research Institute, Dobrovského 2366, CZ580 01 Havlickuv Brod, Czech Republic; (J.D.); (V.H.); (J.P.)
| | - Petr Svoboda
- Hop Research Institute, Kadaňská 2525, CZ438 01 Zatec, Czech Republic; (P.S.); (V.N.)
| | - Vendulka Horáčková
- Potato Research Institute, Dobrovského 2366, CZ580 01 Havlickuv Brod, Czech Republic; (J.D.); (V.H.); (J.P.)
| | - Vladimír Nesvadba
- Hop Research Institute, Kadaňská 2525, CZ438 01 Zatec, Czech Republic; (P.S.); (V.N.)
| | | | - Jiří Ptáček
- Potato Research Institute, Dobrovského 2366, CZ580 01 Havlickuv Brod, Czech Republic; (J.D.); (V.H.); (J.P.)
| | - Alois Bilavcik
- Crop Research Institute, Drnovská 507, CZ161 06 Prague, Czech Republic; (A.B.); (J.Z.)
| | - Jiri Zamecnik
- Crop Research Institute, Drnovská 507, CZ161 06 Prague, Czech Republic; (A.B.); (J.Z.)
| |
Collapse
|
4
|
Lindqvist-Kreuze H, Bonierbale M, Grüneberg WJ, Mendes T, De Boeck B, Campos H. Potato and sweetpotato breeding at the international potato center: approaches, outcomes and the way forward. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:12. [PMID: 38112758 PMCID: PMC10730645 DOI: 10.1007/s00122-023-04515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.
Collapse
Affiliation(s)
| | - Merideth Bonierbale
- International Potato Center, Lima 12, 1558, Apartado, Peru
- Calle Bolivia, 12 Manilva, 29690, Malaga, Spain
| | | | - Thiago Mendes
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Bert De Boeck
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Hugo Campos
- International Potato Center, Lima 12, 1558, Apartado, Peru
| |
Collapse
|
5
|
de Vries ME, Adams JR, Eggers EJ, Ying S, Stockem JE, Kacheyo OC, van Dijk LCM, Khera P, Bachem CW, Lindhout P, van der Vossen EAG. Converting Hybrid Potato Breeding Science into Practice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020230. [PMID: 36678942 PMCID: PMC9861226 DOI: 10.3390/plants12020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
Research on diploid hybrid potato has made fast advances in recent years. In this review we give an overview of the most recent and relevant research outcomes. We define different components needed for a complete hybrid program: inbred line development, hybrid evaluation, cropping systems and variety registration. For each of these components the important research results are discussed and the outcomes and issues that merit further study are identified. We connect fundamental and applied research to application in a breeding program, based on the experiences at the breeding company Solynta. In the concluding remarks, we set hybrid breeding in a societal perspective, and we identify bottlenecks that need to be overcome to allow successful adoption of hybrid potato.
Collapse
Affiliation(s)
| | - James R. Adams
- Solynta, Wageningen 6703 HA, The Netherlands
- Institute of Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Ernst-jan Eggers
- Solynta, Wageningen 6703 HA, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen 6708 PB, The Netherlands
| | - Su Ying
- Solynta, Wageningen 6703 HA, The Netherlands
| | - Julia E. Stockem
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Olivia C. Kacheyo
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Luuk C. M. van Dijk
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Pawan Khera
- Solynta, Wageningen 6703 HA, The Netherlands
| | - Christian W. Bachem
- Solynta, Wageningen 6703 HA, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen 6708 PB, The Netherlands
| | | | | |
Collapse
|
6
|
Gavrilenko T, Chukhina I, Antonova O, Krylova E, Shipilina L, Oskina N, Kostina L. Comparative Analysis of the Genetic Diversity of Chilean Cultivated Potato Based on a Molecular Study of Authentic Herbarium Specimens and Present-Day Gene Bank Accessions. PLANTS (BASEL, SWITZERLAND) 2022; 12:174. [PMID: 36616303 PMCID: PMC9823414 DOI: 10.3390/plants12010174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
At the end of the 1920s, Vavilov organized several potato-collecting missions in South and Central America. Vavilov and his colleagues, Juzepczuk and Bukasov, participated in these expeditions and worked on gathered material, designated two centers of potato varietal riches and diversity-the Peru-Bolivia high-mountain center and the southern coast of Chile. The WIR Herbarium holds authentic specimens of many taxa described by Russian taxonomists. Here, a set of 20 plastid DNA-specific markers was applied for 49 authentic herbarium specimens of Solanum tuberosum L. from the WIR Herbarium to analyze the genetic diversity of the landrace population collected by Juzepczuk in 1928 in southern-central Chile. Two plastid DNA types, T and A, and two chlorotypes were identified in herbarium specimens, with a clear predominance (96%) of chlorotype cpT_III. In addition, we analyzed 46 living Chilean accessions from the VIR field potato gene bank that were collected after the appearance of Phytophthora infestans in Chile. These living accessions were differentiated into four chlorotypes. Finding a D-type cytoplasm in living Chilean accessions that possess two new chlorotypes indicates a replacement of native cultivars and introgression from the wild Mexican species S. demissum that was actively used in breeding as a source of race-specific resistance to late blight.
Collapse
|