1
|
Liang Q, Rehman HM, Zhang J, Lam HM, Chan TF. Dynamic Landscapes of Long Noncoding RNAs During Early Root Development and Differentiation in Glycine max and Glycine soja. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39462897 DOI: 10.1111/pce.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Soybean (Glycine max) is an important crop for its nutritional value. Its wild relative, Glycine soja, provides a valuable genetic resource for improving soybean productivity. Root development and differentiation are essential for soybean plants to take up water and nutrients, store energy and anchor themselves. Long noncoding RNAs (lncRNAs) have been reported to play critical roles in various biological processes. However, the spatiotemporal landscape of lncRNAs during early root development and differentiation in soybeans is scarcely characterized. Using RNA sequencing and transcriptome assembly, we identified 1578 lncRNAs in G. max and 1454 in G. soja, spanning various root portions and time points. Differential expression analysis revealed 82 and 69 lncRNAs exhibiting spatiotemporally differential expression patterns in G. max and G. soja, respectively, indicating their involvement in the early stage of root architecture formation. By elucidating multiple competitive endogenous RNA (ceRNA) networks involving lncRNAs, microRNAs and protein-coding RNAs, we unveiled intricate regulatory mechanisms of lncRNA in early root development and differentiation. Our efforts significantly expand the transcriptome annotations of soybeans, unravel the dynamic landscapes of lncRNAs during early root development and differentiation, and provide valuable resources into the field of soybean root research.
Collapse
Affiliation(s)
- Qiaoxia Liang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hafiz M Rehman
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jizhou Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Numan M, Sun Y, Li G. Exploring the emerging role of long non-coding RNAs (lncRNAs) in plant biology: Functions, mechanisms of action, and future directions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108797. [PMID: 38850732 DOI: 10.1016/j.plaphy.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Mian Numan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuge Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
3
|
Jia J, Luo Y, Wu Z, Ji Y, Liu S, Shu J, Chen B, Liu J. OsJMJ718, a histone demethylase gene, positively regulates seed germination in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:191-202. [PMID: 38116956 DOI: 10.1111/tpj.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Seed vigor has major impact on the rate and uniformity of seedling growth, crop yield, and quality. However, the epigenetic regulatory mechanism of crop seed vigor remains unclear. In this study, a (jumonji C) JmjC gene of the histone lysine demethylase OsJMJ718 was cloned in rice, and its roles in seed germination and its epigenetic regulation mechanism were investigated. OsJMJ718 was located in the nucleus and was engaged in H3K9 methylation. Histochemical GUS staining analysis revealed OsJMJ718 was highly expressed in seed embryos. Abiotic stress strongly induced the OsJMJ718 transcriptional accumulation level. Germination percentage and seedling vigor index of OsJMJ718 knockout lines (OsJMJ718-CR) were lower than those of the wild type (WT). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of seeds imbibed for 24 h showed an increase in H3K9me3 deposition of thousands of genes in OsJMJ718-CR. ChIP-seq results and transcriptome analysis showed that differentially expressed genes were enriched in ABA and ethylene signal transduction pathways. The content of ABA in OsJMJ718-CR was higher than that in WT seeds. OsJMJ718 overexpression enhanced sensitivity to ABA during germination and early seedling growth. In the seed imbibition stage, ABA and ethylene content diminished and augmented, separately, suggesting that OsJMJ718 may adjust rice seed germination through the ABA and ethylene signal transduction pathways. This study displayed the important function of OsJMJ718 in adjusting rice seed germination and vigor, which will provide an essential reference for practical issues, such as improving rice vigor and promoting direct rice sowing production.
Collapse
Affiliation(s)
- Junting Jia
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongjian Luo
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhiyuan Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yufang Ji
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuangxing Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jie Shu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bingxian Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
4
|
Weng M, Zhang D, Wang H, Yang C, Lin H, Pan Y, Lin Y. Long non-coding RNAs and their potential function in response to postharvest senescence of Sparassis latifolia during cold storage. Sci Rep 2024; 14:747. [PMID: 38185662 PMCID: PMC10772075 DOI: 10.1038/s41598-023-46744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/04/2023] [Indexed: 01/09/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in response to aging processes. However, how lncRNAs regulate postharvest senescence of Sparassis latifolia (S. latifolia) with oriented polypropylene (OPP) film packing during cold storage remains unclear. In this study, we performed RNA-seq using the fruiting bodies of S. latifolia stored at 4 ℃ for 0, 8, 16 and 24 days after harvest, and profiled the lncRNA and mRNA transcriptome, respectively. In total, 1003 putative lncRNAs were identified, and there were 495, 483 and 162 differentially expressed (DE) lncRNAs, and 3680, 3941 and 1870 differentially expressed mRNAs after 8, 16 and 24 days of storage, respectively, compared to 0 day of storage. Target genes of differentially expressed lncRNAs were found to significantly associate with carbon and energy metabolism, response to abiotic stimulus, amino acid biosynthesis and metabolism, and protein synthesis and transcription. In addition, DE-lncRNA-mRNA co-expression networks in response to aging stress were also constructed. Taken together, these results confirm the regulatory role of lncRNAs in postharvest senescence of S. latifolia and will facilitate for improving preservation method.
Collapse
Affiliation(s)
- Mengting Weng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Di Zhang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Hongyu Wang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Chi Yang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Hongyi Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Yanfang Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yanquan Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China.
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China.
| |
Collapse
|
5
|
Li X, Liu Q, Liu J. Long Non-Coding RNAs: Discoveries, Mechanisms, and Research Strategies in Seeds. Genes (Basel) 2023; 14:2214. [PMID: 38137035 PMCID: PMC10742540 DOI: 10.3390/genes14122214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Seeds provide nutrients for the embryo and allow for dormancy in stressed environments to better adapt the plant to its environment. In addition, seeds are an essential source of food for human survival and are the basis for the formation of food production and quality. Therefore, the research on the genetic mechanism of seed development and germination will provide a theoretical basis and technical support for the improvement of crop yield and quality. Recent studies have shown that long non-coding RNAs (lncRNAs) occupy a pivotal position in seed development and germination. In this review, we describe the key processes in seed biology and examine discoveries and insights made in seed lncRNA, with emphasis on lncRNAs that regulate seed biology through multiple mechanisms. Given that thousands of lncRNAs are present in the seed transcriptome, characterization has lagged far behind identification. We provide an overview of research strategies and approaches including some exciting new techniques that may uncover the function of lncRNAs in seed. Finally, we discuss the challenges facing the field and the opening questions. All in all, we hope to provide a clear perspective on discoveries of seed lncRNA by linking discoveries, mechanisms, and technologies.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (Q.L.)
| |
Collapse
|
6
|
Sun X, Tang M, Xu L, Luo X, Shang Y, Duan W, Huang Z, Jin C, Chen G. Genome-wide identification of long non-coding RNAs and their potential functions in radish response to salt stress. Front Genet 2023; 14:1232363. [PMID: 38028592 PMCID: PMC10656690 DOI: 10.3389/fgene.2023.1232363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as cis- and trans-acting regulators of protein-coding genes in plants, particularly in response to abiotic stressors. Among these stressors, high soil salinity poses a significant challenge to crop productivity. Radish (Raphanus sativus L.) is a prominent root vegetable crop that exhibits moderate susceptibility to salt stress, particularly during the seedling stage. Nevertheless, the precise regulatory mechanisms through which lncRNAs contribute to salt response in radish remain largely unexplored. In this study, we performed genome-wide identification of lncRNAs using strand-specific RNA sequencing on radish fleshy root samples subjected to varying time points of salinity treatment. A total of 7,709 novel lncRNAs were identified, with 363 of them displaying significant differential expression in response to salt application. Furthermore, through target gene prediction, 5,006 cis- and 5,983 trans-target genes were obtained for the differentially expressed lncRNAs. The predicted target genes of these salt-responsive lncRNAs exhibited strong associations with various plant defense mechanisms, including signal perception and transduction, transcription regulation, ion homeostasis, osmoregulation, reactive oxygen species scavenging, photosynthesis, phytohormone regulation, and kinase activity. Notably, this study represents the first comprehensive genome-wide analysis of salt-responsive lncRNAs in radish, to the best of our knowledge. These findings provide a basis for future functional analysis of lncRNAs implicated in the defense response of radish against high salinity, which will aid in further understanding the regulatory mechanisms underlying radish response to salt stress.
Collapse
Affiliation(s)
- Xiaochuan Sun
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Yutong Shang
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Weike Duan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhinan Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cong Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Guodong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
7
|
Luo Y, Zhang Y, Le J, Li Q, Mou J, Deng S, Li J, Wang R, Deng Z, Liu J. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Metasequoia glyptostroboides Seed Responding to Aging. Antioxidants (Basel) 2023; 12:1353. [PMID: 37507893 PMCID: PMC10376015 DOI: 10.3390/antiox12071353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metasequoia glyptostroboides, Hu and W. C. Cheng, as the only surviving relict species of the Taxodiaceae Metasequoia genus, is a critically endangered and protected species in China. There is a risk of extinction due to the low vigor of M. glyptostroboides seeds, and the physiological mechanism of seed aging in M. glyptostroboides is not yet clear. In order to investigate the physiological and molecular mechanisms underlying the aging process of M. glyptostroboides seeds, we analyzed the antioxidant system and transcriptome at 0, 2, 4, 6, and 8 days after artificial accelerated aging treatment at 40 °C and 100% relative humidity. It was found that the germination percentage of fresh dried M. glyptostroboides seeds was 54 ± 5.29%, and significantly declined to 9.33 ± 1.88% after 6 days of aging, and then gradually decreased until the seed died on day 8. Superoxide dismutase (SOD) activity, ascorbic acid (AsA), glutathione (GSH) content and superoxide anion (O2·-) content and production rate significantly decreased, while malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and glutathione peroxidase (GPX) and catalase (CAT) activity gradually increased during the aging process. A total of 42,189 unigenes were identified in the whole transcriptome, and 40,446 (95.86%) unigenes were annotated in at least one protein database. A total of 15,376 differentially expressed genes (DEGs) were obtained; KEGG enrichment analysis results revealed that seed aging may be mainly involved in the protein-processing pathways in endoplasmic reticulum, oxidative phosphorylation, and ascorbate and aldarate metabolism. Weighted gene co-expression network analysis (WGCNA) revealed that the dark magenta, orange, and medium purple modules were highly correlated with physiological indicators such as SOD, CAT, and GSH and further identified 40 hub genes such as Rboh, ACO, HSF, and CML as playing important roles in the antioxidant network of M. glyptostroboides seeds. These findings provide a broader perspective for studying the regulatory mechanism of seed aging and a large number of potential target genes for the breeding of other endangered gymnosperms.
Collapse
Affiliation(s)
- Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Yixin Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Le
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiaolin Mou
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Shiming Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi 445000, China
- The Plant Germplasm Resources Laboratory, School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|